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Abstract

We provide two characterizations, one axiomatic and the other neuro-computational, of the de-
pendence of choice probabilities on deadlines, within the widely used softmax representation

pt (a;A) =
e
u(a)
�(t)

+�(a)P
b2A e

u(b)
�(t)

+�(b)

where pt (a;A) is the probability that alternative a is selected from the set A of feasible alternatives
if t is the time available to decide, � is a time-dependent noise parameter measuring the unit cost
of information, u is a time-independent utility function, and � is an alternative-speci�c bias that
determines the initial choice probabilities (re�ecting prior information and memory anchoring).
Our axiomatic analysis provides a behavioral foundation of softmax (also known as Multinomial

Logit Model when � is constant). Our neuro-computational derivation provides a biologically inspired
algorithm that may explain the emergence of softmax in choice behavior. Jointly, the two approaches
provide a thorough understanding of softmaximization in terms of internal causes (neuro-physiological
mechanisms) and external e¤ects (testable implications).

Keywords: Discrete Choice Analysis, Drift Di¤usion Model, Heteroscedastic Extreme Value Mod-
els, Luce Model, Metropolis Algorithm, Multinomial Logit Model, Quantal Response Equilibrium,
Rational Inattention

1 Introduction

Human decisions are often made under pressing time limits that substantially a¤ect choice. Think of a
trader deciding among alternative investments in fast moving �nancial markets, a triage nurse screening
patients in life-threatening conditions, a team player under pressure choosing an action in a split second,
a civic o¢ cial determining whether to evacuate an area because of an impending natural hazard.

Choice under time constraint In all of these examples, the decision maker is given an exogenously
constrained deliberation time during which he can gather and process noisy information about alternatives,
whose qualities are ex ante only imperfectly known. This binding constraint may prevent the decision
maker from fully learning the values of alternatives and select with certainty the best course of action.
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The stochastic nature of information acquisition translates into stochastic choice behavior: when facing
the same choice problem in di¤erent occasions, the decision maker might gather di¤erent information and
choose di¤erent alternatives. We study how the choice distribution over available alternatives varies as a
function of deliberation time.
As an additional illustration, more amenable to laboratory analysis than the initial �eld examples,

consider the choice of food. In many empirical studies of food decision problems, a speci�c product a
is identi�ed with the vector a = (a1; a2; :::; an) of its attributes, which may include price, brand, origin,
preparation method, nutrition facts, and so on. A few papers show that the relative importance of
attributes for consumer choice depends on the time available to decide.1 In a nutshell, when no time is
available to choose, consumers resort to habit or make their decisions based on the immediately available
information, say price and brand (a1; a2), the so called �package attributes.� Instead when information
acquisition is possible, their choice is informed by all of the attributes (a1; a2; :::; an) and thus also less
overt �label attributes��such as origin, preparation method, and nutrition facts �play a role. As to
why the resulting choice is stochastic, observe that the sampling of information from the label and from
memory is typically random (e.g., Shadlen and Shohamy, 2016), thus the chosen food items may di¤er in
di¤erent choice episodes.
Our analysis will produce a softmax stochastic choice in which the probability of choosing alternative

a from a menu A depends on two key parameters, the slope with respect to the utility of the option and
the intercept. More precisely, the representation we will identify is:

pt (a;A) =
e
u(a)
�(t)

+�(a)P
b2A e

u(b)
�(t)

+�(b)
(1)

Here u (a) is the true, but ex ante unknown to the decision maker and to the analyst, subjective value of
alternative a, � (t) is the cost of processing one unit of information in t seconds, and � (a) is the initial
bias for alternative a. Bias captures the information that is immediately available and does not require
processing. Such �prior information�is provided by two channels which anchor evaluation: memory and
the immediate perception of the alternatives.2 In our food choice example, attributes such as price and
brand are evident, while origin, preparation, and nutrition facts are more di¢ cult to detect and interpret.
This suggests that � might depend only on the immediate attributes that can be e¤ortlessly appreciated,3

while u reasonably depends on all of them.
The functional form (1) extends well-known representations. When the initial bias is absent � i.e.,

when � is constant �formula (1) reduces to the Multinomial Logit speci�cation. In general, under the
natural assumption that the unit cost of information processing � (t) decreases as more time is available
to analyze evidence,4 three scenarios emerge. First, the initial bias determines choice behavior when there
is no deliberation time

p0 (a;A) = lim
t!0

pt (a;A) =
e�(a)P
b2A e

�(b)

Second, at the opposite extreme, with no time pressure, only the best alternatives are selected

p1 (a;A) = lim
t!1

pt (a;A) > 0 () a 2 argmaxA u

as prescribed by standard microeconomic theory. Third, under constrained but nonzero deliberation time
t, an intermediate stochastic behavior results. It gives, as t increases, a higher chance � in the sense

1See Silayoi and Speece (2004), Grunert and Wills (2007), and the more recent Huseynov and Palma (2021).
2See Bordalo, Gennaioli, and Shleifer (2020) and Bordalo et al. (2021) for a recent analysis of the anchoring role of

memory.
3With the attribute �brand�acting as a memory cue, see, e.g., Warlop, Ratneshwar, and van Osselaer (2005).
4With � (t)!1 as t! 0, and � (t)! 0 as t!1.
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of stochastic dominance �of choosing better alternatives: with more time to decide, more observations
become available and better estimates of values are possible.
Matejka and McKay (2015) showed that softmax stochastic choice behavior arises when a decision

maker optimally processes information about the unknown �state of nature�u under an entropic unit cost
of information � (t), with � depending on the decision maker�s prior. Their study provides an important
optimal information acquisition foundation for softmax behavior. In this paper, we study this behavior
from two di¤erent, yet complementary, external and internal viewpoints that integrate their analysis. Next
we outline them.

Outside the black box: psychometric axioms We provide a framework for the external, behavioral,
study of an analyst who observes the choices of a decision maker and interprets them in the �as if�mode of
revealed preference analysis. We show that softmax is captured by few simple behavioral axioms, Theorems
2 and 7, and that its parameters can be elicited from behavioral data, Theorems 3 and 8. In order to
achieve the softmax representation, the classic Luce�s axioms are obviously necessary, as it must be the
case that

pt (a;A) =
evt(a)P
b2A e

vt(b)

for all deadlines t, menus A, and alternatives a in A. Yet, these axioms cannot be su¢ cient because
formula (1) imposes the additional separable structure

vt (a) =
u (a)

� (t)
+ � (a) (2)

on the Lucean vt�s. We thus need to introduce new axioms. They involve, for each deliberation time t,
a standard preference order �t that ranks alternatives a and b, as well as two binary relations �\

t and
��t that account, respectively, for the intensity of preference and for the ease of comparison across pairs
of distinct alternatives (a; b) and (c; d). All these relations are revealed by the choice probabilities under
di¤erent deadlines t, and so they can be retrieved from observables. Our axioms connect choice behavior
at di¤erent t�s by requiring the consistency of the relations (�t;�\

t;��t ). For instance, consistency of the
intensity of preference �\

t requires that, for any two deadlines t < s,

(a; b) �\
t (c; d) () (a; b) �\

s (c; d)

for all distinct pairs (a; b) and (c; d). In words, if deliberation for t seconds reveals stronger evidence in
favor of the hypothesis �a is preferable to b�over the hypothesis �c is preferable to d,�the same happens
after a longer deliberation time s. The consistency requirements for the preference order and for the ease
of comparison take similar forms.
While the elicitation of these three relations is somehow standard in the absence of bias (Section 2.1.1),

based on the classic analyses of Debreu (1958) and Davidson and Marschak (1959); the exercise has never
been performed in the presence of bias. To carry it out, we have to introduce novel elicitation methods to
reveal (�t;�\

t;��t ) from choice probabilities (Section 3.1.2).
The next issue that we study axiomatically is whether the overall performance in choice improves (or

degrades) with the amount of time available to decide. In our representation (1), the question can be made
precise, and amounts to the characterization of decreasing (or increasing) monotonicity of � (t). In the
study of fast choice over food items, when t is small and the time constraint is binding, both the �ndings
of Milosavljevic et al. (2010) and Reutskaja et al. (2011) suggest that the quality of choice (measured
by comparing the actual choice with preferences elicited earlier among the items) becomes worse as time
pressure increases.
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Inside the black box: neuro-computational process Besides the external analysis just described,
we also pursue an internal, neuro-computational, approach that provides a causal analysis of the decision
maker choices through a biologically inspired algorithm that may explain softmax emergence in intelligent
behavior. Our algorithm has a sequential structure, motivated by the well-known limits of human working
memory and supported by eye-tracking studies �from the seminal Russo and Rosen (1975) to the recent
Reutskaja et al. (2011). Our neuro-computational model naturally links multialternative choice with the
classic Drift Di¤usion Model of binary choice (DDM, hereafter) proposed by Ratcli¤ (1978). Speci�cally,
we show that a procedure consisting of:

1. Markovian exploration of the menu,

2. sequential comparisons of pairs of alternatives, each based on a DDM,

3. choice of the incumbent at the deadline,

results in a stationary distribution that approximates softmax choice probabilities, Theorems 5 and 13.
When binary comparisons are performed according to the symmetric DDM, this distribution is Multinomial
Logit with no initial bias (Section 2.2.1). In contrast, a bias appears when general DDMs are considered.
Again, the biased case goes beyond the standard analysis (see Bogacz et al. 2006) and requires a novel,
formal, understanding of how past information is encoded, behaviorally and neurally, in the DDM (Section
3.2.1). We also present physiologically-calibrated simulations that support the biological plausibility of
this neuro-computational foundation (Section 2.3).

The joint achievement The two approaches just outlined provide, along with the optimality analysis of
Matejka and McKay (2015), a complete perspective on softmaximization as a model of preference discovery,
in terms of internal causes (neuro-physiological mechanisms) and external e¤ects (testable behavioral
implications). In particular, our two approaches show that softmax:

1. is empirically testable and its parameters can be identi�ed by behavioral data,

2. is plausible from a neural viewpoint.

The parameters u, �, and � of the behavioral softmax process (1) that we axiomatize have neural counter-
parts in the neural softmax process that our algorithm generates. The integration of the inner and outer
analyses allows us to empirically identify and cross-validate these, behavioral and neural, unobservable
parameters. Thus, the two analyses complement each other conceptually, through a cause-e¤ect nexus, as
well as empirically (Section 2.3).
To ease the exposition, we �rst introduce in Section 2 the main concepts and ideas in the special

case when the initial bias is absent, which corresponds to the Multinomial Logit Model and the symmetric
DDM. They are widely studied speci�cations of softmax (in economics) and of the DDM (in neuroscience),
and so in this section we can borrow concepts and techniques from the existing literature and go quicker
to the point.
The analysis of the general case is, instead, signi�cantly more demanding since it requires the introduc-

tion of new tools that allow us to disentangle the e¤ects of past information and of evidence accumulation
on observed choice behavior. This analysis is developed in Section 3. As anticipated, in this section
new techniques to elicit the relations (�t;�\

t;��t ) from choice probabilities are introduced and a novel
connection between the softmax initial bias and the DDM starting point bias emerges.
We close this introduction by mentioning the relevance of our research for discrete choice analysis and

by discussing the related literature.
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Discrete choice analysis A byproduct of our analysis is an axiomatic foundation of the Heteroscedastic
Multinomial Logit Model, the workhorse of discrete choice analysis.5 Indeed, (1) can be rewritten in terms
of random utility (see Luce and Suppes, 1965, and McFadden, 1973) as

pt (a;A) = Pr fu (a) + � (t) � (a) > u (b) + � (t) � (b) for all b 2 A n fagg

where f� (a)ga2A is a collection of independent errors with type I extreme value distribution, speci�c mean
� (a), and common variance �2=6. Here pt (a;A) describes the stochastic behavior of a decision maker
who is trying to maximize u but, because of time pressure, makes mistakes in evaluating the various
alternatives. The standard deviation of mistakes is proportional to � (t) and their bias is captured by
�. In discrete choice analysis, t may be time or, more in general, an index describing the experimental
conditions under which data have been collected (that is, the di¤erent data sets available to the analyst).6

Heteroscedasticity, i.e., the dependence of � on t and the presence of �, was introduced because, while
the decision makers�utility u is a stable trait to be learned, disturbances are a¤ected by experimental
conditions and alternative-speci�c biases.
The present paper permits to test for misspeci�cation of the Heteroscedastic Multinomial Logit Model

and provides simple techniques to directly identify its parameters from data. In return, the discrete choice
analysis literature provides a number of methods to estimate the parameters of the softmax speci�cation
(1).7

Related theory literature This paper considers exogenous deliberation times, thus we focus our dis-
cussion on the literature dealing with this issue.8 Our treatment is axiomatic; to the best of our knowledge,
there is only one other axiomatic foundation of the softmax model based on choice frequencies, due to
Matejka and McKay (2015). The main di¤erence is that they assume that the analyst knows the state
that determines the decision maker�s utility,9 while we consider the general case in which the analyst may
possibly ignore this state, or even the state space. Outside the laboratory, presuming such knowledge is a
quite strong assumption.
As to the behavioral (external) analysis, in a Random Expected Utility perspective Lu (2016) axiomati-

cally captures preference learning through increasingly informative priors on the set of probabilistic beliefs
of the decision maker. Fudenberg and Strzalecki (2015) axiomatize a discounted adjusted logit model.
Di¤erently from our work, these papers study stochastic choice in a dynamic setting where choices made
today can in�uence the possible choices available tomorrow, and consumption may occur in multiple pe-
riods. Frick, Iijima, and Strzalecki (2017) characterize the general random utility extension. Saito (2017)
obtains several characterizations of the Mixed Logit Model. Finally, Baldassi et al. (2020a) and Fudenberg
et al. (2020) axiomatize the value-based DDM.
As to the algorithmic (internal) analysis, while we consider a sequence of binary comparisons with

evidence accumulation in each comparison, the vast majority of the extensions of the DDM to choice

5See, e.g., the textbooks of Louviere, Hensher, and Swait (2000) and Train (2009).
6For example, the indexes t represent locations in Train (2009, pp. 24-25), while they distinguish between stated intentions

and market choices in Ben-Akiva and Morikawa (1990). In the working paper version of this paper, Cerreia-Vioglio et al.
(2021a), we extend our axiomatic analysis to allow for completely general choice and index sets.

7The econometric study of this model, now textbook material, dates back to Ben-Akiva and Morikawa (1991), Swait and
Louviere (1993), Hensher and Bradley (1993), and Bhat (1995).

8Models where decision time is endogenously � say, optimally �chosen are the subject of active research and we refer
readers to Woodford (2014), Tajima, Drugowitsch, and Pouget (2016), Steiner, Stewart, and Matejka (2017), Fudenberg,
Strack, and Strzalecki (2018), Callaway, Rangel, and Gri¢ ths (2019), Tajima et al. (2019), Webb (2019), and Jang, Sharma,
and Drugowitsch (2020) for updated perspectives.

9Choice situations of this kind have been studied since Saltzman and Garner (1948) and Kaufman et al. (1949). More
recent contributions are Gabaix et al. (2006), Caplin and Dean (2014), Dean and Neligh (2019), and Dewan and Neligh
(2020).
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tasks with jAj > 2 alternatives considers simultaneous evidence accumulation for all the jAj alternatives
in the menu. In most studies, the choice task is assumed to simultaneously activate jAj accumulators,
each of which is primarily sensitive to one of the alternatives and integrates the evidence relative to
that alternative. Choices are then based on absolute or relative evidence levels, with endogenous or
exogenous stopping times. See, e.g., Roe, Busemeyer, and Townsend (2001), Anderson, Goeree, and Holt
(2004), McMillen and Holmes (2006), Bogacz et al. (2007), Ditterich (2010), and Krajbich and Rangel
(2011). Natenzon (2019) also belongs to this family and proposes a Multinomial Bayesian Probit model
to jointly accommodate similarity, attraction, and compromise e¤ects in a preference learning perspective.
According to Natenzon�s model, when facing a menu of alternatives the decision maker �who has a priori
i.i.d. standard normally distributed beliefs on the possible utilities of alternatives � receives a random
vector of jointly normally distributed signals that represents how much he is able to learn about the
ranking of alternatives before making a choice (say within time t). The decision maker updates the prior
according to Bayes�rule and chooses the option with the highest posterior mean utility. Natenzon�s paper
is arguably the closest to ours. Like us, Natenzon builds on a parameterized family of random choice rules
and tackles the problem of accounting for prior information and ease of comparison.10 He also clearly
spells out the interpretation of random utility on which, in the unbiased case, our identi�cation between
intensity of preference and intensity of evidence rests upon. At the same time, Natenzon provides testable
implications but not a full characterization of his model, while we fully characterize ours. Moreover, he
identi�es the parameters of the model by assuming that the analyst observes choice from menus with
phantom options, while we obtain identi�cation by assuming that the analyst observes choice behavior at
di¤erent deadlines.
Reutskaja et al. (2011) propose three two-stage models in which subjects randomly search through

the feasible set during an initial search phase and, when this phase is concluded, select the best item
encountered during the search (up to some noise). Their approach involves a �quasi-exhaustive�search in
that the presence of a deadline may terminate the search phase before all alternatives have been evaluated
and introduces an error probability. Although di¤erent from these models, and from those of Krajbich and
Rangel (2011), our model is consistent with some of their experimental �ndings about the menu-exploration
process and shares the reliance on the classical choice theory approach in which multialternative choice
proceeds through binary comparison and elimination.
Finally, to the best of our knowledge, in the economics literature the �rst to showcase the fact that

value based symmetric DDMs generate (binary) logit probabilities were Clithero (2018) and Webb (2019).

Organization of the paper Section 2 is dedicated to the unbiased case of multinomial logit processes.
Section 3 studies the general case of softmax processes. Section 4 concludes. All proofs and additional
simulations are relegated to the Online Appendices.

2 Unbiased analysis: multinomial logit processes

As previously discussed, the Multinomial Logit Model and the symmetric DDM both capture the case in
which initial bias is absent, as Bogacz et al. (2006) and Matejka and McKay (2015) remark with essentially
the same words from altogether di¤erent perspectives. With these models the psychometric complication
of separating the e¤ects of prior information and those of acquired evidence on observed choice is avoided,
a simpli�cation that permits a brisker exposition of the main results and ideas of our research, and allows
us to borrow more from the literature. For this reason, in this section we focus on the Multinomial Logit
Model (MNL, hereafter) and on the symmetric DDM.

10He also takes the similarity of alternatives into account, an important feature that we do not consider here.
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In so doing we neglect, however, the fundamental role of memory and initial bias (and their pitfalls) in
decision making with limited cognitive resources. In the next Section 3, we extend the analysis to general
softmax processes to cope with these issues, and this will require us to tackle some novel, and nontrivial,
conceptual and technical challenges.

2.1 Outside the black box: behavioral MNL

2.1.1 Preamble: random choice rules

Let A be the collection of all nonempty �nite subsets A of a universal space X of possible alternatives,
called menus (or choice sets or choice problems). We assume throughout that X is a connected topological
space,11 and we denote by �(X) the set of all probability measures on X with �nite support.
A random choice rule is a function

p : A ! �(X)

A 7! p (�; A)

such that p (A;A) = 1 for all A in A. Given any alternative a in X, we interpret p (fag ; A), simply
denoted p (a;A), as the probability that a decision maker chooses a when the set of available alternatives
is A. More generally, if B is a subset of X, p (B;A) is the probability

P
b2B p (b; A) that the selected

element lies in B. This probability can be viewed as the frequency with which an element in B is chosen.
The requirement p (A;A) = 1 simply means that unavailable alternatives cannot be chosen. Indeed, it is
equivalent to p (x;A) = 0 for all x that do not belong to A.
As usual, given any a and b in X, we indicate by

p (a; b) = p (a; fa; bg) (3)

the probability with which a is chosen from the doubleton fa; bg. Luce (1959) proposes the most classical
random choice model. Its main assumptions on p are:

Positivity p (a; b) > 0 for all a; b 2 X.

Choice Axiom p (a;A) = p (a;B) p (B;A) for all B � A in A and all a 2 B.

The Choice Axiom says that the probability of choosing an alternative a from menu A is that of �rst
selecting B fromA and then a fromB. As observed by Luce, this amounts to require that fp (�; A) : A 2 Ag
is a conditional probability system in the sense of Renyi (1955).
As well known, both axioms can be expressed in terms of odds. In particular, the Choice Axiom is

equivalent to the odds independence condition p (a; b) =p (b; a) = p (a;A) =p (b; A), for all alternatives a
and b in A and all menus A in A, that requires the odds for a against b to be independent of the other
alternatives available in the menu.12

A convenient continuity assumption is often automatically satis�ed in applications.

Continuity The function (a; b) 7! p (a; b) is continuous on the set of all pairs of distinct alternatives in
X.

Next we state Luce�s classic representation theorem.

11With at least three elements, e.g., a nonsingleton convex subset of Rn. In the working paper version of this paper,
Cerreia-Vioglio et al. (2021a), our analysis is extended to a general set X, even without a topology.
12This odds independence condition is often called independence from irrelevant alternatives. Cerreia-Vioglio et al. (2021b)

characterizes the random choice rules that satisfy this condition but not necessarily Positivity.
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Theorem 1 (Luce) The following conditions are equivalent for a random choice rule p : A ! �(X):

1. p satis�es Positivity, the Choice Axiom, and Continuity;

2. there exists a continuous v : X ! R such that

p (a;A) =
ev(a)P
b2A e

v(b)
(4)

for all A 2 A and all a 2 A.

Moreover, v is unique up to location (i.e., up to translation by a constant).

Under Luce�s axioms, the function v is a psychometric utility, that is, it represents the intensity of
preference relation B revealed by p. Formally, the relation B is de�ned by

(a; b)B (c; d) () p (a; b) > p (c; d) (5)

and the function v is such that

(a; b)B (c; d) () v (a)� v (b) > v (c)� v (d) (6)

for all a 6= b and all c 6= d in X. Discussed by Debreu (1958, p. 440), Luce (1959, p. 39), and especially
Davidson and Marschak (1959, p. 237), the interpretation of B as the revealed intensity of preference is
based on the following classic psychophysical principle, traditionally attributed to Cattell and Fullerton.

Discrimination principle Equally often noticed di¤erences are equal on the sensation scale, unless always
or never noticed.

In a random utility perspective, the Lucean psychometric utility v (a) of alternative a is unknown and
a noisy signal V (a) is received.13 Since p (a; b) = PrfV (a) � V (b)g, it follows that

p (a; b) > p (c; d) () Pr fV (a) � V (b)g > Pr fV (c) � V (d)g (7)

that is, (a; b)B (c; d) if and only if the probability of receiving a signal in favor of a over b is higher than
that of receiving a signal in favor of c over d. Intensity of preference is thus best understood in terms of
intensity of evidence. The notions of this subsection are classic �e.g., the equivalence (7) dates back to
Block and Marschak (1960, p. 110) and Luce and Suppes (1965, p. 338). Yet, this relationship between
intensity of preference and intensity of evidence is less known and, as it will be seen later in the paper, is
key for our analysis of preference discovery.

2.1.2 Axiomatic MNL

Let T � (0;1) be a �discrete or continuous �set of points in time.

De�nition 1 A random choice process is a collection fptgt2T of random choice rules.

For each t, we interpret pt (a;A) as the probability that a decision maker chooses alternative a from
menu A if t is the deliberation time, that is, the maximum amount of time he is (exogenously) given to

13As observed by Natenzon (2019), this interpretation of random utility in which the value of options is perceived with
noise is the one originally proposed by random utility models in psychology.
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decide.14 A random choice process thus describes the decision maker stochastic choice behavior under
di¤erent levels of time pressure.
If each pt satis�es Positivity, the Choice Axiom, and Continuity, then for each t in T there exists a

psychometric utility vt : X ! R such that

pt (a;A) =
evt(a)P
b2A e

vt(b)
(8)

When this is the case, we say that fptgt2T satis�es the Psychometric Luce Axioms. From there, to attain
the MNL representation

pt (a;A) =
e
u(a)
�(t)P

b2A e
u(b)
�(t)

we need to express all the functions vt by means of a time-independent utility function u and an alternative-
independent noise coe¢ cient � such that

vt (a) =
u (a)

� (t)

This is achieved through the next axiom which requires that, over deliberation times, there are no ordinal
reversals in the preference intensities.

Consistency Given any s > t in T ,

(a; b)Bt (c; d) () (a; b)Bs (c; d) (9)

for all a 6= b and c 6= d in X.

In words, if the amount of evidence in favor of the hypothesis �a is preferable to b�is, after a given
deliberation time, greater than that in favor of the hypothesis �c is preferable to d�, the same happens
after a longer deliberation time.
In terms of primitive observables, Consistency reads naturally: given any s > t in T ,

pt (a; b) > pt (c; d) () ps (a; b) > ps (c; d)

for all a 6= b and c 6= d in X. This is coherent with the idea that information depends on an underlying
true value that does not change over time and is gradually discovered as time goes by. The next thought
experiment illustrates such a concept.15

Example 1 Subjects are given t seconds to observe a QR code and take one of the following actions:
choose b and receive a number of dollars equal to the number of black squares, choose w and receive a
number of dollars equal to the number of white squares. Like in Caplin and Dean (2014, p. 59), they
are also told that QR codes have been stochastically generated with an a priori equal chance of a black

14Say, by an experimenter, a script, or a spouse (see Agranov, Caplin, and Tergiman, 2015, for a simple protocol that
allows to observe these probabilities for human agents).
15Notice that Consistency admits a formulation which does not rely on the order structure of T : Given any s and t in T ,

(a; b)Bt (c; d) =) (a; b)Bs (c; d) (10)

for all a 6= b and c 6= d in X. This formulation allows to consider alternative interpretations of the index set T , and to
extend our results accordingly.
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majority or a white majority. Two di¤erent decision problems are portrayed below:

Problem 1: fb1; w1g Problem 2: fb2; w2g

Figure 1 Two decision problems.
Introspection and experiments �starting with the seminal Thurstone (1929) to more recent random

dot motion studies on humans, rats, and pigeons �suggest that, irrespective of t, pt (b1; w1) > pt (b2; w2)

because the true, but unknown, frequency of black squares in Problem 1 is bigger than that in Problem 2.
It is from this frequency that agents sample for t seconds before choosing b or w in each problem. N

We are now ready to state our �rst representation theorem.

Theorem 2 For a random choice process fptgt2T , the following conditions are equivalent:

1. fptg satis�es the Psychometric Luce Axioms and Consistency;

2. there exist a continuous u : X ! R and a � : T ! (0;1) such that

pt (a;A) =
e
u(a)
�(t)P

b2A e
u(b)
�(t)

(MNL)

for all A 2 A, all a 2 A, and all t 2 T .

In this case, u is a cardinally unique psychometric utility for pt for all t 2 T , and � is unique given u,
unless fptg is uniform.16

The next result permits to elicit both the psychometric utility and the noise coe¢ cient. Given any a
and b in X and any t in T ,

rt (a; b) =
pt (a; b)

pt (b; a)
and `t (a; b) = ln rt (a; b)

denote the odds for a against b �that is, the ratio between the number of episodes in which a is chosen and
the number of episodes in which b is �and the log-odds, respectively. The latter are analytically convenient
because they are positive if and only if odds are favorable to a.

Theorem 3 A MNL process fptg is not uniform if and only if there exist â; b̂ 2 X and t̂ 2 T such that
pt̂(â; b̂) > pt̂(b̂; â). In this case, the functions û : X ! R and �̂ : T ! (0;1) given by

û (x) =
`t̂(x; b̂)

`t̂(â; b̂)
; �̂ (t) =

1

`t(â; b̂)
(11)

are well de�ned, with û continuous and

pt (a;A) =
e
û(a)

�̂(t)P
b2A e

û(b)

�̂(t)

for all A 2 A, all a 2 A, and all t 2 T .
16A random choice process fptg is uniform if pt (a;A) = 1= jAj for all a 2 A 2 A and all t 2 T . In this case, formula

(MNL) holds for any � provided u is constant.
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Together the last two results permit to test whether the MNL model is consistent with available choice
data and to identify its parameters.
How can Consistency drive these results? The intuition is, in retrospect, simple. The Psychometric

Luce Axioms guarantee that each vt in (8) is a psychometric utility for the corresponding intensity of
preference relation Bt. Consistency, in turn, ensures that Bt coincides with Bs. But, then, vt has to be
a positive a¢ ne transformation of vs because of the cardinal uniqueness of psychometric utilities. This
observation allows us to transform (8) into (MNL) and also ensures that the functions û and �̂ de�ned in
(11) are �essentially independent�of the choice of â, b̂, and t̂.
This answer, however, rises a few more questions. Why Consistency implies that alternatives are a

priori homogeneous, with no initial bias? How should it be weakened to have � appear in the general
softmax formula (1)? When is � monotone/continuous? What is the limit behavior of fptg as deliberation
time diverges and so loses its binding constraint nature?
We will address all of these questions in the next section on general softmax processes. Here we close

by characterizing the a¢ nity of u, a case of relevance for both applications and experiments; for instance,
when choice under risk is considered and X is a set of lotteries.17 In the last lines of this subsection we
assume that X is a convex subset of a topological vector space.

Stochastic Betweenness There exists t 2 T such that

pt

�
a;
1

2
a+

1

2
b

�
= pt

�
1

2
a+

1

2
b; b

�
for all a 6= b in X.

In words, this axiom says that �equal probability di¤erences are equally often noticed.�It parallels its
risk theory counterpart.

Proposition 4 The following conditions are equivalent for a MNL process:

1. fptg satis�es Stochastic Betweenness;

2. the psychometric utility u is a¢ ne.

2.2 Inside the black box: neuro-computational MNL

So far, we regarded the components pt of a random choice process fptg as the output of a black box: our
axioms characterize MNL processes, but remain silent about what decision procedure may generate the
corresponding choice probabilities. Here, we address this issue by combining DDM pairwise comparisons of
alternatives and e¢ cient Markovian search of the menu. Both assumptions, motivated by the well-known
limits of working memory and by the seminal eye-tracking study of Russo and Rosen (1975), �nd support in
recent theories about memory,18 as well as in recent eye-tracking experiments on multialternative choice.19

Again, we consider a decision maker who has to choose an optimal alternative from a �nite subset A of
X within an exogenously controlled deliberation time t. For extra clarity, t is the time given to the agent
to think through a single decision episode involving choice problem A, so it captures the overall level of
time pressure.
The procedure we present can be summarized as follows. The decision marker�s search:

17MNLs with a¢ ne utility functions are also used in discrete choice analysis, as well as in quantal response equilibrium
theory (Section 4.4), and in most multicriteria decision analysis� applications. Recall that u : X ! R is a¢ ne when
u (�x+ (1� �) y) = �u (x) + (1� �)u (y) for all � in [0; 1] and all x; y in X.
18See, e.g., Luck and Vogel (1997), Vogel and Machizawa (2004), and Shadlen and Shohamy (2016).
19See, e.g., Krajbich and Rangel (2011) and Reutskaja et al. (2011).
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1. starts from an arbitrary element b of the menu, the incumbent ;

2. selects a candidate alternative a, the proposal ;

3. compares them via the DDM, and makes the winner of the DDM comparison the new incumbent;

4. repeats steps 1-3 until deliberation time t comes and the current incumbent is chosen.

This is a basic variation over the standard brute force comparison-and-elimination algorithm of clas-
sical optimization � termed standard revision in marketing. According to standard revision, multiple
alternatives are compared in a pairwise fashion and one alternative is permanently eliminated after each
binary comparison. Thus, after jAj � 1 of these comparisons the incumbent solution is an optimal choice.
The implicit assumption which this brute force procedure rests upon is that pairwise comparisons are
instantaneous and exact. In our procedure, instead, the fact that comparisons are time consuming may
lead to incomplete exploration of the menu, while the fact that comparisons may be erroneous makes it
inadvisable to eliminate permanently an alternative that was judged inferior at a previous stage.

2.2.1 Binary comparisons �the symmetric DDM

According to the DDM, when two alternatives a and b are compared, an alternative is selected as soon
as the net evidence in its favor reaches a posited decision threshold �. Such a threshold represents the
amount of evidence that the decision maker needs to decide and determines the speed-accuracy tradeo¤:
lower thresholds produce faster but less accurate responding, whereas higher thresholds produce more
accurate but slower responses (see Bogacz et al., 2006). In experiments, high time pressure is known to
reduce thresholds to speed up decisions.20 In our setting, this means that the DDM decision thresholds
for binary comparisons depend on the (overall) time constraint t for choice, that is, � is a function � (t)
of t.21

Speci�cally, the comparison of a and b is believed to activate two neuronal populations whose activities
(�ring rates) provide evidence for the two alternatives.22 The mean activities v (a) and v (b) are interpreted
as neural indexes of value of the alternatives. For this reason, we call v : X ! R the neural utility of
the decision maker. The stochastic nature of �ring rates is captured by the assumption that the actual
activities of neuronal populations experience instantaneous and independent white noise �uctuations.
Evidence accumulation in favor of a and b is thus represented by two uncorrelated Brownian motions with
drift

Va (�) = v (a) � +Wa (�) and Vb (�) = v (b) � +Wb (�)

Absence of bias corresponds to the fact that the normals Wa (�) and Wb (�) have zero mean (and variance
�). With these assumptions,23 we have the symmetric DDM (sDDM ), where:

� the net evidence in favor of a against b is given by the di¤erence

Za;b (�) = [v (a)� v (b)] � +
p
2W (�) 8� 2 (0;1) (DDM)

where W is the Wiener process (Wa �Wb) =
p
2;

20See, e.g., Milosavljevic et al. (2010) and Karsilar et al. (2014, especially p. 14).
21A caveat: � (t) depends on the deadline t, but is constant given t within each binary comparison. Here we are not

considering DDMs with �collapsing thresholds� like in Drugowitsch et al. (2012) and Fudenberg, Strack, and Strzalecki
(2018). More on this in the concluding remarks (Section 4.3).
22See Bogacz et al. (2006) and Shadlen and Shohamy (2016) for the neuro-physiological and neuro-psychological analyses

of this mechanism; and Roe, Busemeyer, and Townsend (2001), Krajbich, Armel, and Rangel (2010), Milosavljevic et al.
(2010), and Rangel and Clithero (2014) for applications of the DDM to the choice of consumption goods.
23Which will be relaxed in Section 3.2, where more general DDM�s are considered.
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� comparison ends when Za;b (�) reaches either the threshold � (t) or �� (t); so the response time is
the random variable

RTt (a; b) = min f� 2 (0;1) : jZa;b (�)j = � (t)g

� at which time, the alternative supported by evidence is selected; so, the comparison outcome is the
random variable

COt (a; b) =

(
a if Za;b (RTt (a; b)) = � (t)

b if Za;b (RTt (a; b)) = �� (t)

The presence of noise in evidence accumulation is what makes DDM comparisons time consuming and
subject to error. In this regard, notice that the sDDM is an optimal Bayesian test of the hypothesis
�v (a) > v (b)�that alternative a be preferable to alternative b.24

2.2.2 Proposal mechanism �e¢ cient Metropolis exploration

The standard Markovian way to navigate a menu starts with a candidate solution b drawn from an initial
distribution � in �(A) and then, given an incumbent solution b, continues by considering an alternative
candidate solution a 6= b, called proposal, with probability Q (a j b). This exploration procedure was
introduced by Metropolis et al. (1953) to calculate statistical mechanics equilibria,25 and adopted in
the Simulated Annealing heuristic of Kirkpatrick, Gelatt, and Vecchi (1983) to compute extrema in high
dimensional combinatorial optimization problems.
The only formal requirements of Metropolis et al. (1953) on the probability transition matrix Q,

called exploration matrix, are symmetry and irreducibility. At the same time, starting with the seminal
Kirkpatrick, Gelatt, and Vecchi (1983), the adequate selection of the exploration matrix Q has been the
object of �ne tuning for the e¢ ciency of optimization algorithms. The natural exploration matrix for a
�traveling salesman�might not be equally compelling to describe our �spouse sent to buy wine 10 minutes
before the arrival of the in-laws.� In this case, time pressure compels towards comparisons of category
�white or red?�rather than more sophisticated distinctions �Champagne or Crémant?�
The sDDM provides a speci�c suggestion for exploration under time pressure. As observed by Fuden-

berg, Strack, and Strzalecki (2018), the Bayesian decision problem that the sDDM solves features correct
expectations on the time that it will take to compare two alternatives, before engaging in evidence accu-
mulation to try and �nd the superior one. Easy choices will produce fast and accurate responses, while
di¢ cult ones will be time consuming and poorly e¢ cient, absorbing a lot of time in exchange for a small
payo¤ di¤erence and presenting high error probabilities. These considerations suggest the adoption of an
exploration matrix of the form

Qt (a j b) /
1

E [RTt(a; b)]
8a 6= b

where the probability with which a is proposed if b is the incumbent is inversely proportional to the
expected response time. This choice adapts exploration to time constraints by giving priority to fast and
accurate comparisons.26

Finally, the absence of initial biases assumed in this section suggests a uniform initial distribution �.27

24See Gold and Shadlen (2002, 2007), Bogacz et al. (2006), Shadlen and Shohamy (2016), and especially Fudenberg,
Strack, and Strzalecki (2018, Section II.B).
25See also Barker (1965).
26See Baldassi et al. (2020b) for a semi-Markov analysis of general exploration matrices.
27Mathematically, we can use any initial distribution. Yet, we �nd this speci�cation conceptually compelling.
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2.2.3 The Metropolis-DDM algorithm

We now combine sDDM pairwise comparisons and e¢ cient exploration. The resulting procedure describes
a decision maker who, given time t to decide, �rst automatically adjusts his evidence threshold � (t) and
then compares alternatives according to the sDDM. His search, starting with a random initial solution,
is driven by speed and accuracy concerns, and it continues until time t is reached, at which point the
incumbent solution is chosen.

Metropolis-DDM Algorithm

Input: Given t > 0.

Start: Draw a0 from A according to � and

� set �0 = 0,

� set b0 = a0.

Repeat: Draw an+1 from A according to Qt (� j bn) and compare it to bn via the sDDM, so:

� set �n+1 = �n +RTt (an+1; bn),

� set bn+1 = COt (an+1; bn).

until �n+1 > t.

Stop: Set b� = bn.

Output: Choose b� from A.

Notice that Qt, RTt, and COt all depend on both the neural utility v and the threshold level � (t),
which in turn depends on the deadline t. The Metropolis-DDM algorithm randomly produces a sequence

(b0; a1; �1; b1; :::; bn; an+1; �n+1; bn+1; :::)

of incumbents bn, proposals an+1, and elapsed times �n+1, which is truncated by the stopping rule �n+1 > t

at the chosen alternative b� = bn.
At each iteration of the �repeat-until� loop, the proposal a is accepted as the new incumbent with

probability
Pt (a; b) = P [COt (a; b) = a]

while a is rejected and the old incumbent b is maintained with the complementary probability 1�Pt (a; b).
Therefore, the resulting probability of selecting a as a new incumbent given old incumbent b is

Mt (a j b) = Qt (a j b)Pt (a; b) 8a 6= b in A

This transition probability combines the stochasticity of the proposal mechanism and that of the accep-
tance/rejection rule. Speci�cally, if the algorithm stops at the (n+ 1)-th iteration, the resulting choice
probabilities are given by the vector Mn

t � in �(A).
28

28Here Mt = [Mt (a j b)]a;b2A is regarded as the probability transition matrix of a Markov chain with initial distribution
�, and Mn

t as its n-th power. Moreover, we write Mt (A) and Qt (A) since these matrices depend on the menu A under
consideration.
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Theorem 5 Let v : X ! R and � : T ! (0;1). Given any A 2 A and any t 2 T , the exploration matrix
Qt = Qt (A) is irreducible and symmetric and the incumbents�transition matrix Mt =Mt (A) is aperiodic,
irreducible, and reversible, with stationary distribution

mt (a;A) =
e�(t)v(a)P
b2A e

�(t)v(b)
8a 2 A (12)

In particular, limn!1M
n
t (A)� = mt (�; A) for all A 2 A and all � 2 �(A).

What does this theorem say about the output of the Metropolis-DDM algorithm? Since the average
duration of each iteration is bounded above by �2 (t) =2, then the average number of iterations is

�nt �
2t

�2 (t)
� 1 (13)

and the �average�output of the algorithm is
M �nt

t � (14)

The distance between this output and the stationary distribution (12) decreases exponentially in �nt.29

Therefore, if �2 (t) is small relative to t, then �nt is large and Theorem 5 guarantees that the choice
probabilities produced by the Metropolis-DDM algorithm are essentially given by (12), which is a MNL
distribution under the following identi�cation

Inner Outer
Neural utility v Psychometric utility u

Threshold � Inverse noise 1=�

(15)

This important table connects our inside and outside analyses, as we discuss next.

2.3 Inside and outside the black box

Remarkably, the neural utility v and threshold parameter � appearing in the neuro-computational speci-
�cation (12) of the MNL are the ones governing the sDDM pairwise comparisons. Thus, table (15) allows
us to combine Theorems 2, 3, and 5 in order to identify and cross-validate the unobservable parameters
of internal and external processes.
Speci�cally, if the multialternative choice data available to the analyst do not reject the hypotheses of

Theorem 2, she can use Theorem 3 and identify the psychometric parameters u and �. At the same time,
she can obtain sDDM data from binary comparisons under di¤erent levels of time pressure and estimate
the neural parameters v and �.30 Theorem 5 and, again, Theorem 2 say that, if the Metropolis-DDM
algorithm converges, then the neural utility v must be a cardinal transformation of the psychometric
utility u, and the threshold � must be an inverse transformation of the noise parameter �. In sum, inside
and outside analyses cross-validate each other (see 2.3.2 below for the details of the identi�cation and
cross-validation procedure).

2.3.1 Simulations

The crucial hypothesis behind this cross-validation procedure is the numerical convergence of the Metropolis-
DDM algorithm to its stationary distribution in the �nite number of iterations allowed by the time limit
t. For a large t, thanks to inequality (13) numerical convergence is guaranteed whenever � (t) is o

�p
t
�
.

29This follows from Doeblin Theorem. See, e.g., Stroock (2005, p. 28) for an explicit bound on the variation distance
between M �nt

t � and mt.
30This has been done, e.g., by Milosavljevic et al. (2010).
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But, often t is small. It is therefore important to understand whether numerical convergence takes place,
with laboratory calibrated parameters v and � (t), when t is in the order of a few seconds.
In the following simulations, we consider choice from two di¤erent menus of eight snacksA = fa0; a1; :::; a7g

and B = fb0; b1; :::; b7g, under two di¤erent deadlines of t = 4 and t = 12 seconds that induce high and low
time pressure on binary choices. Our sDDM parameters v, � (4), and � (12) are derived from the estimates
of Milosavljevic et al. (2010).
Menu A consists of alternatives that are equally spaced in utility, and no two alternatives are indi¤erent.

Menu B instead consists of four pairs of indi¤erent alternatives that have the same utility.
For each menu, in each time pressure condition, we run the Metropolis-DDM algorithm ten thousand

times. This procedure simulates ten thousand identical subjects who choose according to the Metropolis-
DDM algorithm and delivers the empirical choice probabilities that an analyst would observe. These
probabilities are plotted in orange below. Instead, in blue we plotted the stationary distribution of the
algorithm. The indistinguishability of the orange and blue plots says that, even if the algorithm only
performs a few iterations because of the imposed deadline t, numerical convergence to the stationary
MNL distribution (12) is achieved. The average number of iterations �that is, of binary comparisons �
performed in each simulation is also reported. Its small size makes the observed convergence results even
more surprising.31

Simulation 1 (high time pressure, menu A, no indi¤erent alternatives) Choose in 4 seconds
with v (ai) = i � 3:5 (for i = 0; :::; 7) and � (4) = 0:849. In the picture below, the horizontal axis
represents the alternatives. Speci�cally, the 8 ticks on the horizontal axis correspond to the alternatives,
with the number below each tick representing the neural utility of the corresponding alternative. The
choice probability of each alternative is reported on the vertical axis: again, the orange plot describes
the empirical choice probabilities obtained by simulating the Metropolis-DDM algorithm, the blue plot
describes the theoretical MNL choice probabilities. The average number of binary comparisons in this
simulation is 18.

Figure 2 Simulation 1.

Simulation 2 (high time pressure, menu B, four pairs of indi¤erent alternatives) Choose
in 4 seconds with v (bi) = ji� 3:5j (for i = 0; :::; 7) and � (4) = 0:849. The average number of binary
comparisons in this simulation is 12.

31As anticipated, and in line with Krajbich and Rangel (2011) and Reutskaja et al. (2011), we use a uniform initial
distribution � in the simulations below; but the observed convergence, a number of alternative simulations, and the Doeblin
Theorem (on the exponential convergence of Markov chains) tell us that any other � would lead to similar results.

16



Figure 3 Simulation 2.

Simulation 3 (low time pressure, menu A, no indi¤erent alternatives) Choose in 12 seconds
with v (ai) = i � 3:5 (for i = 0; :::; 7) and � (12) = 1:442. The average number of binary comparisons in
this simulation is 32.

Figure 4 Simulation 3.

Simulation 4 (low time pressure, menu B, four pairs of indi¤erent alternatives) Choose
in 12 seconds with v (bi) = ji� 3:5j (for i = 0; :::; 7) and � (12) = 1:442. The average number of binary
comparisons in this simulation is 19.
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Figure 5 Simulation 4.

Summing up, the Metropolis-DDM algorithm seems to numerically converge when calibrated with
physiological data.32 This substantiates the identi�cation and cross-validation techniques connecting the
axiomatic and neuro-computational approaches that we described at the beginning of this section, and
that we further discuss below.

2.3.2 Taking stock

Our axiomatic characterization of the MNL, Theorem 2, permits to test the Metropolis-DDM algorithm,
which in turn, as shown by Theorem 5, approximates Matejka and McKay�s optimal information acqui-
sition strategy in a biologically feasible way. Our identi�cation result, Theorem 3, allows the analyst to
discover the �unknown state�that the decision maker is trying to determine, and reveals that this state
simultaneously coincides with the psychometric utility (a behavioral measurement) and the neural utility
(a physiological parameter). The same result also relates the unit cost of information � (t) of the MNL (a
behavioral measurement) with the evidence threshold � (t) of the DDM (a physiological parameter).
Our inside-outside analysis thus provides a procedure enabling the analyst to combine behavioral and

physiological measurements in studying human choices. We can summarize it as follows.

Identi�cation and cross-validation procedure

Neural MNL hypothesis For all A in A and all t in T , the Metropolis-DDM approximates its MNL
distribution

mt (a;A) =
e�(t)v(a)P
b2A e

�(t)v(b)
8a 2 A

with unknown neural components v and �.

Behavioral data The analyst observes a random choice process fptg, describing the frequencies of choice.

Behavioral test The analyst checks whether fptg satis�es the axioms of Theorem 2. If this is the case,
the neural MNL hypothesis is not rejected, and she posits that m = p, that is,

e
u(a)
�(t)P

b2A e
u(b)
�(t)

= pt (a;A) = mt (a;A) =
e�(t)v(a)P
b2A e

�(t)v(b)
8a 2 A

for all A in A and all t in T , with unknown behavioral components u and �.

Identi�cation If not uniform, the MNL choice process fptg reveals, by Theorem 3, to the analyst the
values û and �̂ of the behavioral components of fptg. By the uniqueness properties of MNL representations
(Theorem 2), we have

v = u = û and � =
1

�
=
1

�̂

up to cardinal transformations.33 The neural and behavioral parameters are thus identi�ed.

Cross-validation If available physiological data permit to identify the neural components v and �, the
analyst can cross-validate the values previously obtained.

32See also Online Appendix D for some stress testing.
33That is, there exist k > 0 and h 2 R such that v = ku+ h and � = 1=k�, and the same holds for û and �̂ (with possibly

di¤erent constants k̂ and ĥ).
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This procedure elucidates the interrelation between the inner and outer perspectives on stochastic
choice studied in this paper. Far from being disconnected, these two perspectives complement each other
conceptually �by providing external (behavioral) veri�cation and internal (causal) explanation of MNL
stochastic choice �as well as empirically �by permitting to identify and cross-validate the components of
MNL speci�cations.

3 General analysis: softmax processes

We now present a general analysis of softmax processes able to account for the role of memory and initial
biases.

3.1 Outside the black box: behavioral softmax

3.1.1 Preamble: psychometric utilities

The previous MNL analysis presents the advantages of going beyond the traditional ordinal framework �
in which preferences only rank alternatives �by introducing a richer setting where preference intensities
and their utility representations play a crucial role.
To extend the analysis, we consider three asymmetric and negatively transitive relations �, �\, and

�� on X.34 The �rst, �, is a standard preference order that ranks alternatives, in the sense of Debreu
(1954, 1964). The second, �\, ranks pairs of alternatives in terms of intensity of preference, in the sense of
Shapley (1975). The third, ��, ranks binary choice problems in terms of ease of comparison, in the sense
of Suppes and Winet (1955).
Formally, the relation � is de�ned on the set of alternatives X and ranks them

a � b

In words, �a is preferred to b.� The relation �\ is de�ned on the set of pairs of distinct alternatives
X2
6= = f(a; b) : a 6= b in Xg and ranks them

(a; b) �\ (c; d)

In words, �the strength of preference for a over b is higher than that for c over d.�Finally, the relation ��
is de�ned on the set of binary choice sets A2 = ffa; bg : a 6= b in Xg and ranks them

fa; bg �� fc; dg

In words, �choosing between a and b is easier than choosing between c and d.�
Next we introduce a joint numerical representation of these three binary relations that extends the

traditional ordinal representation.

De�nition 2 A function u : X ! R is a psychometric utility for the triplet (�;�\;��) if, for each pair
of alternatives a; b 2 X,

a � b() u(a) > u(b) (16)

and if, for each quadruple of alternatives a 6= b and c 6= d in X,

(a; b) �\ (c; d)() u(a)� u(b) > u (c)� u (d) (17)

as well as
fa; bg �� fc; dg () ju(a)� u(b)j > ju (c)� u (d)j (18)

34Asymmetry and negative transitivity are the standard assumptions for a strict preference (see De�nition 2.2 of Kreps,
1988).
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A psychometric utility not only represents the preference order � in the standard fashion, but also
accounts for the intensity of preferences, quanti�ed via utility di¤erences, as well as for the ease of com-
parison, quanti�ed via absolute values of utility di¤erences.
Psychometric utilities are cardinal, as the next routine lemma shows.

Lemma 6 Continuous psychometric utilities are cardinally unique.

The function v of Theorem 1 is, aptly, a psychometric utility for the triplet (�;�\;��) de�ned by

a � b () p(a; b) > p(b; a)

(a; b) �\ (c; d) () p(a; b) > p(c; d) (19)

fa; bg �� fc; dg () ER (a; b) < ER (c; d)

for all quadruples of alternatives a 6= b and c 6= d in X. The error rate

ER (a; b) = min fp(a; b); p(b; a)g =

8>><>>:
p(a; b) if b � a

p(b; a) if a � b

1=2 otherwise

is the probability of choosing an alternative from fa; bg which is inferior under �. To check that v is a
psychometric utility for this triplet

�
�;�\;��

�
, �rst observe that

(a; b) �\ (c; d) () (a; b)B (c; d)

i.e., �\ reveals intensity of preference (and of evidence) as discussed in Section 2. Second, � reveals ordinal
preference according to the standard (unbiased) stochastic notion

a � b () a 6= b and p (a; b) > 1=2

which informed economics and psychology since the 1950s.35 Finally, the idea that error rates measure
di¢ culty of comparison, which dates back to Fechnerian psychophysics,36 is often spelled out via the
following classic psychophysical principle.

Psychometric Principle Easier choice problems are more likely to elicit correct responses than harder
ones.37

We conclude that v is, indeed, a psychometric utility for the triplet
�
�;�\;��

�
de�ned in (19).

3.1.2 Measurement and revelations

TheMNL analysis of Section 2 showed that �in the absence of initial bias �stochastic choice behavior under
time pressure can be faithfully described by means of preference intensities and psychometric utilities. Our
general softmax representation theorem, Theorem 7 below, will show that this continues to be the case
also when initial bias is present. To take advantage of psychometric techniques, however, we will have to
extract a triplet (�t;�\

t;��t ) from each component pt of a general random choice process. But, how can

35See, e.g., Georgescu-Roegen (1936, 1958), Mosteller and Nogee (1951), Papandreou (1953) and Papandreou et al. (1957),
Quandt (1956), Debreu (1958), and Davidson and Marschack (1959).
36See, e.g., Falmagne (1985).
37This principle is often discussed under the name �Psychometric Function.� See, e.g., Alos-Ferrer, Fehr, and Netzer

(2021).
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an analyst detect and measure the preference order and its intensity, or ease of comparison, if the decision
maker�s behavior is initially biased?
To address this question, we �rst augment the set T of strictly positive deliberation times to T0 = T[f0g

and, given any two distinct alternatives a and b, we interpret the initial probability

p0 (a; b)

as the frequency with which a is chosen over b, when no evidence-based deliberation is possible. With this,
we can introduce a key notion.

De�nition 3 Alternatives a and b are a priori homogeneous if p0 (a; b) = 1=2

In words, alternatives are a priori homogeneous when there is no initial bias for one over the other.
The interpretation of

pt (a; b)

for t > 0 is still that discussed in Section 2 as the frequency with which a is chosen over b after the
decision maker had the possibility to deliberate for t seconds, during which information about the two
alternatives is gathered and processed. Depending on the obtained evidence, be it from environment or
memory (or both),38 the choice probability pt (a; b) at deliberation time t may well be di¤erent from the
initial p0 (a; b).39 We interpret this change in light of the following basic principle.

Measurement Principle Prior behavior gets transformed into posterior behavior through consideration
of evidence, and the transformation itself represents the amount of evidence processed during deliberation.

This principle is best formalized through a change in odds as:

rt (a; b)| {z }
posterior odds

= f|{z}
strength of evidence

� r0 (a; b)| {z }
prior odds

(20)

The ratio

f = ft (a; b) =
rt (a; b)

r0 (a; b)

represents the strength of evidence, processed in t seconds, in favor of the hypothesis �a is preferable to
b.�
That said, in both statistics and neuroscience, additive measurements are preferred.40 This is routinely

achieved by taking logarithms on both sides of (20):

`t (a; b)| {z }
posterior log-odds

= ln ft (a; b)| {z }
weight of evidence

+ `0 (a; b)| {z }
prior log-odds

The di¤erence
wt (a; b) = ln ft (a; b) = `t (a; b)� `0 (a; b)

is the additive version of ft (a; b), called weight of evidence, a convenient logarithmic rescaling of strength
of evidence.
Summing up, the strength of evidence is the change in odds for a against b induced by evidence

accumulation before the deadline. Next we show how this important notion permits to reveal preference

38See, e.g., Bogacz et al. (2006), Gold and Shadlen (2007), Shadlen and Shohamy (2016), and Bordalo, Gennaioli, and
Shleifer (2020).
39See, again, Silayoi and Speece (2004) and Huseynov and Palma (2021).
40See, again, Gold and Shadlen (2007).
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order, intensity of preference, and ease of comparison �in symbols, to reveal the triple (�t;�\
t;��t ) for all

t in T .
We begin with the traditional ordinal notion. In the following, as usual, the term �revealed�is short

for �revealed to an analyst.�

De�nition 4 After a deliberation time t, an alternative a is revealed preferred to b, written a �t b, if
pt (a; b) > p0 (a; b).

In words, a is revealed preferred to b if deliberation favors a over b. In particular, when alternatives
are a priori homogeneous, i.e., p0 (a; b) = 1=2, this de�nition coincides with the standard unbiased notion
of stochastically revealed preference

a �t b () pt (a; b) > pt (b; a)

introduced in (19). In general, when alternatives are not necessarily a priori homogeneous, preference for
a over b is equivalently revealed by an increase in the odds for a against b after deliberation. Indeed,

a �t b () wt (a; b) > 0 () ft (a; b) > 1

Starting from this observation, Luce (1957, pp. 17-19) observes that, while the preference order is deter-
mined by the sign of wt (a; b), the intensity of preference is determined by its value. This motivates the
next de�nition.

De�nition 5 After a deliberation time t, the preference for a over b is revealed to be stronger than that
for c over d, written (a; b) �\

t (c; d), if wt (a; b) > wt (c; d).

In words, the preference for a over b is stronger than that for c over d if deliberation provides stronger
evidence in favor of a against b than in favor of c against d. Formally,

(a; b) �\
t (c; d) () wt (a; b) > wt (c; d) () ft (a; b) > ft (c; d)

This de�nition thus extends the identi�cation between intensity of preference and intensity of evidence
that we discussed in Section 2. Clearly, in the a unbiased case, the relation �\

t reduces to the (unbiased)
intensity of preference relation Bt adopted there.
In a series of papers,41 Georg Rasch calls degree of easiness of a decision problem fa; bg the quantity

jwt (a; b)j

The reason why this quantity captures the Psychometric Principle is immediately seen by drawing the error
rate �the probability of choosing the inferior alternative �in the decision problem fa; bg as a function of
the degree of easiness.

41See Rasch (1960, 1961, 1980).
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Figure 6 Error rate as a function of the degree of easiness, with an initial bias of 10% in favor of the
inferior alternative.42

When the degree of easiness is zero, the error rate is maximal and coincides with the initial probability
of choosing the inferior alternative. It then decreases exponentially as the degree of easiness increases, and
eventually vanishes. Analytically, this is seen by observing that, if wt (a; b) > 0, that is, a �t b, then the
error rate is the probability

ERt (a; b)| {z }
error rate

= pt (b; a) =
1

1 + exp

0@`0 (a; b) + jwt (a; b)j| {z }
degree of easiness

1A
of choosing b from fa; bg, and similar considerations apply if wt (a; b) < 0.
Since wt (a; b) = �wt (b; a), the evidence in favor of a coincides with that against b. The degree of

easiness jwt (a; b)j thus represents the total amount of evidence that can be obtained by comparing a and
b for t seconds. A decision problem is di¢ cult when this quantity is small, say because sensory evidence
or memory do not provide information to the decision maker about the alternatives. All this leads to the
following de�nition.

De�nition 6 After a deliberation time t, a decision problem fa; bg is revealed to be easier than a decision
problem fc; dg, written fa; bg ��t fc; dg, if jwt (a; b)j > jwt (c; d)j.

At this point, it should not surprise the reader that also this de�nition reduces to (19) when alternatives
are a priori homogeneous.
Summing up, weight of evidence �or, equivalently, strength of evidence �can be elicited from choice

data by looking at the variation of choice probabilities before and after deliberation. It reveals three
relations: preference order, preference intensity, and ease of comparison �in symbols (�t;�\

t;��t ).

3.1.3 Axiomatic softmax

The natural extension of Consistency to the general, possibly biased case, is:

Intensity Consistency Given any s > t in T ,

(a; b) �\
t (c; d) () (a; b) �\

s (c; d)

for all a 6= b and c 6= d in X.

This axiom says that if the weight of evidence in favor of the hypothesis �a is preferable to b�is, after
a given deliberation time t, greater than that in favor of the hypothesis �c is preferable to d�, the same
happens after a longer deliberation time s. Formally,

wt (a; b) > wt (c; d) () ws (a; b) > ws (c; d)

for all s > t. In the unbiased case, �\
t reduces to Bt and so Intensity Consistency reduces to Consistency.43

The next representation theorem will show that � together with the Psychometric Luce Axioms �
Intensity Consistency characterizes general softmax processes. Yet, an alternative characterization is
obtained by using non-reversal conditions for the preference order �t and the ease of comparison relation

42For instance, when a �t b the inferior alternative is b.
43Like Consistency, Intensity Consistency admits a formulation which is viable for general index sets T , see Footnote 15.
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��t . Interestingly, these conditions have a one-way form, weaker than the two-way form of Intensity
Consistency.

Preference (Order) Consistency Given any s > t in T ,

a �t b =) a �s b

for all a; b 2 X.

Ease (of Comparison) Consistency Given any s > t in T ,

fa; bg ��s fc; dg =) fa; bg ��t fc; dg

for all a 6= b and c 6= d in X.

In terms of primitives, Preference Consistency is equivalent to

pt (a; b) > p0 (a; b) =) ps (a; b) > p0 (a; b)

for all s > t. It says that preferences are stable: as time passes, they are not reverted. This is in accord
with the idea that, during deliberation, statistically correct (yet noisy) evidence is gathered and analyzed
by the decision maker to inform his choice between the two alternatives.
Ease Consistency, instead, says that the di¢ culty of decision problem fa; bg relative to decision problem

fc; dg is inherent to the alternatives involved and independent of deliberation times. If the comparison
between a and b is not easier than that between c and d, given deliberation time t, then the passage of time
does not make a and b easier to compare than c and d. In terms of degree of easiness, Ease Consistency
is equivalent to

jwt (a; b)j � jwt (c; d)j =) jws (a; b)j � jws (c; d)j

for all s > t.
We can now state the general softmax representation theorem. We adopt the convention � (0) =1.

Theorem 7 For a random choice process fptgt2T0, the following conditions are equivalent:

1. fptg satis�es the Psychometric Luce Axioms and Intensity Consistency;

2. fptg satis�es the Psychometric Luce Axioms, Preference Consistency, and Ease Consistency;

3. there exist two continuous functions u : X ! R and � : X ! R, and a � : T ! (0;1) such that

pt (a;A) =
e
u(a)
�(t)

+�(a)P
b2A e

u(b)
�(t)

+�(b)
(softmax)

for all A 2 A, all a 2 A, and all t 2 T0.

In this case, u is a psychometric utility for (�t;�\
t;��t ) for all t in T , � is unique up to location, and

� is unique given u, unless fptg is constant.
Moreover, the process fptgt2T is MNL if and only if all distinct alternatives are a priori homogeneous.

An analyst, who observes that the decision maker�s behavior does not contradict the axioms of the
theorem, can thus interpret this behavior in terms of preference discovery, that is, as if the decision maker
were trying to learn the value that alternatives have for him and choose the best one.
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Like in the unbiased case, our analyst can identify from the probabilistic choices of the decision maker
the softmax parameters u, �, and �.44 Speci�cally, u is a psychometric utility for each triplet (�t;�\

t;��t ),
and as such it is cardinally unique (Lemma 6). Then, if the process is constant, u must be constant,
� (a) � � (b) = `0(a; b) for all a; b 2 X, and � is unde�ned; else there exist at least a pair of alternatives
â and b̂ and a deliberation time t̂ such that the preference â �t̂ b̂ is revealed, and the next result provides
the explicit expression of the parameters.

Theorem 8 A softmax process fptg is not constant if and only if there exist â; b̂ 2 X and t̂ 2 T such that
pt̂(â; b̂) > p0(â; b̂). In this case, the functions û; �̂ : X ! R and �̂ : T ! (0;1) given by

û (x) =
wt̂(x; b̂)

wt̂(â; b̂)
; �̂ (x) = `0(x; b̂) ; �̂ (t) =

1

wt(â; b̂)
(21)

are well de�ned, with û and �̂ continuous, and

pt (a;A) =
e
û(a)

�̂(t)
+�̂(a)P

b2A e
û(b)

�̂(t)
+�̂(b)

(22)

for all A 2 A, all a 2 A, and all t 2 T0.

The last two results extend the �unbiased�Theorems 2 and 3 to the general case. So, they enable the
analyst to interpret the stochastic choice behavior of the decision maker in terms of softmax preference
discovery and to empirically identify the softmax parameters.

3.1.4 Ordinality and learning

We conclude this section by characterizing the case in which, as deliberation time increases, the stochastic
choice behavior of a decision maker improves and becomes less prone to errors.45

Decreasing Error Rates Given any s > t in T ,

pt (a; b) > p0 (a; b) =) ps (a; b) � pt (a; b)

for all a; b 2 X.

Under Preference Consistency, this axiom requires the frequency of mistakes to decrease over delibera-
tion time. Indeed, pt (a; b) > p0 (a; b) is equivalent to the fact that a �t b, Preference Consistency implies
a �s b, and ps (a; b) � pt (a; b) is equivalent to a positive reduction of the error rate. In words, longer
deliberation times decrease the chance of selecting an inferior alternative. To appreciate the consequences
of this axiom, we need an additional one.

Stochastic Dominance Improvements Given any s > t in T ,

ps (fa 2 A : a �s bg ; A) � pt (fa 2 A : a �t bg ; A) (23)

44Their estimation is standard, typically carried out by maximum likelihood. See, e.g., Ben-Akiva and Lerman (1985) on
the econometric side and McKelvey and Palfrey (1995) on the game-theoretic one.
45For instance, in medical decision making under severe time pressure, the longer the time a doctor has to process

information, the lower the chance of selecting a suboptimal treatment seems to be (see, e.g., ALQathani et al., 2016). Yet,
other evidence from psychology suggests that overly slack deadlines leave room to procrastination, distractions, and fatigue
that may deteriorate choice performance (see, e.g., Ariely and Wertenbroch, 2002). Clearly, the study of these time-increasing
error rate situations mirrors the one we consider here.
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for all A 2 A and all b 2 A.

Stochastic Dominance Improvements requires that, for any given benchmark alternative b, the prob-
ability of choosing a superior alternative a is higher after deliberating for a longer amount of time. This
notion thus records, in preferential terms, a probabilistic improvement of the decision maker stochastic
choice behavior as deliberation times increase.
The next proposition shows that Decreasing Error Rates and Stochastic Dominance Improvements are

equivalent axioms for softmax processes. Moreover, they characterize the choice behavior of a decision
maker who takes better and better decisions, according to stochastic dominance in payo¤s, as deliberation
time increases. In terms of the softmax speci�cation, each of these axioms corresponds to a decreasing
noise function �. In terms of rational inattention, to a time-decreasing unit cost of information processing
(e.g., the attention cost of reading and understanding a given paragraph decreases with the time available
to do so).

Proposition 9 Let fptg be a nonconstant softmax process with utility u, bias �, and noise �. The following
conditions are equivalent:

1. fptg satis�es Decreasing Error Rates;

2. fptg satis�es Stochastic Dominance Improvements;

3. given any s > t in T ,

ps (fa 2 A : u (a) > �ug ; A) � pt (fa 2 A : u (a) > �ug ; A)

for all �u 2 R and all A 2 A;

4. � is decreasing.

In view of this result, it is natural to wonder whether, for longer and longer deliberation times, the
decision maker eventually learns his ranking over alternatives, that is, his preference order over them. In
other words, is the preference discovery interpretation of softmax processes true to its name?
To address this question, assume for simplicity that T = (0;1).46 By the last result, under Decreasing

Error Rates, the noise function � is decreasing on (0;1). This permits to de�ne a limit random choice
rule p1 : A ! �(X) by

p1 (a;A) = lim
t!1

pt (a;A)

for all A in A and all a in A. This random choice rule describes behavior in the absence of time pressure.

Asymptotic Tie-breaking Given any a; b 2 X,

p1 (a; b) 6= 0; 1 =) p1 (a; b) = p0 (a; b)

In conjunction with the previous ones, this axiom says that the decision maker is unable to make up
his mind between alternatives a and b, irrespective of deliberation time, only if it is impossible for him to
retrieve new information about them.

Proposition 10 Let fptg be a nonconstant softmax process with utility u, bias �, and noise �. If fptg
satis�es Decreasing Error Rates and Asymptotic Tie-breaking, then

p1 (a;A) = �a (argmaxA u)
e�(a)P

b2argmaxA u e
�(b)

46Otherwise, the role of 1 is played by the supremum of T .
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for all A 2 A and all a 2 A. In particular,

u (a) > u (b)() p1 (a; b) = 1

for all a 6= b in X.

According to this proposition, the choice rule p1 reveals a preference � on X de�ned by

a � b() p1 (a; b) = 1

and represented by u. This preference permits to interpret the non-stochastic limit choice behavior in
a traditional ordinal way, as if carried out by a decision maker who learned his preference � so, his
psychometric utility u up to an ordinal transformation �and accordingly selects the best alternatives.47

Standard ordinal analysis thus emerges as the limit version, as deliberation time becomes arbitrarily
large, of our cardinal analysis. Alternatively, one can regard standard theory as assuming deliberation
time to be virtual; in real time, decision makers act as if they know their preferences.

3.2 Inside the black box: neuro-computational softmax

Symmetry of the DDM presented in Section 2.2.1 permits the description of the net evidence obtained by
the decision maker in di¤erential form as

dZa;b (�) = [v (a)� v (b)] d� +
p
2dW (�)

Za;b (0) = 0 (24)

where the initial condition Za;b (0) = 0 captures the lack of prior information/initial bias in favor or
against either a or b. As extensively discussed by Bogacz et al. (2006) and Ratcli¤ et al. (2016), prior
information/initial bias are captured in the DDM by replacing the null initial condition (24) with

Za;b (0) = �t (a; b)

where �t (a; b) > 0 means that a is initially favored, and �t (a; b) < 0 that b is. In fact, with starting point
position �t (a; b) 6= 0, the evidence needed to select a and b becomes � (t) � �t (a; b) and � (t) + �t (a; b),
respectively.
In this section, we study what happens when a general DDM replaces the symmetric DDM in the

Metropolis-DDM algorithm. The additional ingredient, relative to the neural utility v : X ! R and
threshold function � : T ! (0;1) of Section 2.2.1, is the starting point function

� : X2
6= � T ! R

(a; b; t) 7! �t (a; b)

such that
�� (t) < �t (a; b) = ��t (b; a) < � (t)

for all (a; b; t). The unbiased case of Section 2.2.1 corresponds to � = 0. In what follows, we denote by

DDM(v; �; �)

a DDM with parameters v, �, and �.

47In contrast, an analyst learns u up to a cardinal transformation by observing the decision maker softmax stochastic
behavior (Theorem 8).
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3.2.1 Gibbs transitions

In this subsection we relate starting point positions and initial probabilities as equivalent ways to express
initial biases. To this end, consider a choice between two alternatives a and b to be carried out through a
DDM featuring neural utility v, threshold �, and starting point �. As we just observed, the values

�t (a; b) = ��t (b; a)

at (a; b) and (b; a), determine whether the DDM comparison favors either a or b. However, it should be
possible to express the same bias with the values

�t (a; b) = 1� �t (b; a)

of an ex ante (binary preference) probability �t : X2
6= ! R at (a; b) that describes the chances of choos-

ing either a or b before the DDM comparison takes place, that is, before new evidence is gathered and
processed.48 Both �t and �t incorporate the decision maker past information, in particular his past mem-
ories. Both lack �di¤erently from dZ and � �an obvious physiological counterpart and their values are
posited by the analyst to better interpret the model and �t the data.49

How do they relate? Which ex ante probability �t corresponds to a starting point function �t? To
address these natural questions, observe that � induces an ex post (binary preference) probability

P�t (a; b) = P
h
CO�t (a; b) = a

i
of choosing a over b, after the DDM that starts at position �t (a; b) has accumulated neural evidence � (t).

De�nition 7 Given a DDM(v; �; �), the Gibbs transition of � is

��t (a; b) =
e��(t)v(a)P�t (a; b)

e��(t)v(a)P�t (a; b) + e��(t)v(b)P�t (b; a)
(25)

for all a 6= b in X and all t in T .

Formula (25) associates an ex ante probability �t to each section �t at t of the starting point function
�.50 The Gibbs transition of � can be equivalently expressed in terms of odds as follows:

P�t (a; b)
P�t (b; a)| {z }

odds post DDM

= e�(t)[v(a)�v(b)]| {z }
strength of evidence

� ��t (a; b)

��t (b; a)| {z }
odds ante DDM

(26)

Therefore, this formula can be interpreted according to the Measurement Principle of Section 3.1.2. With
one caveat: in equation (20) of that section, the analyst observes the ex ante and the ex post odds, and
aims to measure the unknown strength of evidence. Here, in contrast, the analyst observes the ex post
odds and the evidence threshold, and aims to measure the unknown ex ante odds that are implied by a
posited bias �. Yet, the underlying measurement principle is the same: the change in odds for a against
b resulting from the DDM is proportional, via an exponential factor, to the accumulated neural evidence
� (t) weighted by the neural utility di¤erence v (a) � v (b). The quantity � (t) [v (a)� v (b)] is thus the
weight of evidence for a against b that makes the neural system move from the ex ante to the ex post
probability of choosing a over b.
Observe that, for �t (a; b) = 0, formula (26) is easily seen to imply ��t (a; b) = 1=2, as the intuition

for the unbiased sDDM suggests. In words, a null starting point position corresponds to the a priori
homogeneity of alternatives.
The de�nition of Gibbs transition can also be justi�ed through large deviations arguments.51 But

48The �binary preference probability� terminology is due to Luce and Suppes (1965). Like �t, also �t may in principle
depend on t.
49See Bogacz et al. (2006).
50It is, mutatis mutandis, the analog of the Gibbs prior of Zhang (2006a, 2006b).
51See, e.g., Dupuis and Ellis (1997, p. 27), and the working paper version of this paper, Cerreia-Vioglio et al. (2021a).
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perhaps more importantly, the relation between starting point positions and ex ante probabilities, de�ned
via (25), features some remarkable properties.

Proposition 11 Given a DDM(v; �; �), for any a 6= b in X we have

�t (a; b) � 0() ��t (a; b) �
1

2
(27)

and ���P�t (a; b)� ��t (a; b)
��� � � (t)

4
jv (a)� v (b)j (28)

for all t in T .

The monotonicity formula (27) ensures that a positive bias �t (a; b) in favor of a against b corresponds
to a higher ex ante probability ��t (a; b) of selecting a over b. It implies, inter alia, that a null � corresponds
to a uniform �, as we previously checked in a direct way.
The monotonicity formula thus substantiates the claim that ��t is the ex ante probability naturally

associated to the initial condition �t. Inequality (28) further corroborates this role of �
�
t by showing that it

actually governs the DDM�s probabilistic choices when the accumulated evidence � is small or alternatives
have similar neural utilities, thus initial bias prevails.
This leads to a crucial observation: since it is not a¤ected by evidence accumulation, the ex ante choice

probability �t should not depend on the level of time pressure.

Gibbs Transition Consistency Given any s > t in T ,

��t (a; b) = ��s (a; b)

for all a 6= b in X.

If this consistency condition is violated, there is a pair (a; b) of alternatives whose ex ante choice
probability di¤er, ��t (a; b) 6= ��s (a; b), depending on the level of time pressure, t or s. But, this contradicts
the intuition that � and �� describe ex ante information only. In other words, if a starting point function
does not satisfy Gibbs Transition Consistency, then it captures something more than (or something di¤erent
from) memory anchoring.

3.2.2 Transitive DDMs and stationarity

When considering a Metropolis-DDM algorithm with general DDM(v; �; �) binary comparisons, the �rst
observation is that, even if DDM(v; �; �) satis�es Gibbs Transition Consistency, the transition matrix
Mt (A) of the algorithm may fail to be reversible for some A in A. But reversibility is the Markovian
condition which convergence of MCMC algorithms to a distribution that satisfy Luce�s Choice Axiom
rests upon (see Baldassi et al., 2020b and Valkanova, 2021).
The next proposition will show that reversibility has the following meaningful behavioral counterpart.

(Stochastic) Transitivity Given any t 2 T ,

P�t (b; a)P
�
t (c; b)P

�
t (a; c) = P

�
t (c; a)P

�
t (b; c)P

�
t (a; b) (29)

for all distinct alternatives a; b; c 2 A.

In words, DDM(v; �; �) is transitive when the violations of transitivity that it determines are due only
to the presence of noise. Indeed, condition (29) amounts to require that the intransitive cycles

a! b! c! a and a! c! b! a

29



be equally likely. The symmetric (unbiased, value-based) DDMs, considered in Section 2.2, are an impor-
tant example of transitive DDM�s that satisfy Gibbs Transition Consistency. Biased value-based DDMs,
instead, might well not be transitive, so may result in choices between alternatives that feature systematic
intransitivities, violating a basic rationality tenet. Transitivity ensures that this is not the case.
The next result, which builds upon Kolmogorov (1936) and Luce and Suppes (1965),52 shows the

importance of transitive DDMs in our setting, and a key feature of the corresponding ex ante binary
probabilities.

Proposition 12 The following conditions are equivalent for a DDM(v; �; �) which satis�es Gibbs Transi-
tion Consistency:

1. DDM(v; �; �) is transitive;

2. the incumbents�transition matrix Mt (A) is reversible for all A 2 A and all t 2 T ;

3. there exists & : X ! R such that,

��t (a; b) =
e&(a)

e&(a) + e&(b)

for all (a; b; t) 2 X2
6= � T .

In this case, � is uniquely determined by &, and vice versa (up to location).

Remarkably, this proposition connects properties of altogether di¤erent nature:

1. transitivity of the DDM, a behavioral property which ensures that violations of transitivity in the
probabilistic choices that it determines are due only to the presence of noise;

2. reversibility ofM , an algorithmic property which is an important su¢ cient condition for the existence
of stationary distributions of Markov chains,53 which is necessary to guarantee that the generated
distributions satisfy Renyi conditioning as the set of Markov states changes;54

3. existence of a universal Gibbs density & : X ! R for � that, via conditioning, determines all Gibbs
transitions.

Because of the one-to-one correspondence between � and & (up to location) established by Proposition
12, transitive DDMs that satisfy Gibbs Transition Consistency can be simply denoted by DDM(v; �; &).55

With this, we can establish the general version of Theorem 5.

Theorem 13 Let DDM(v; �; &) be a transitive DDM which satis�es Gibbs Transition Consistency. Given
any A 2 A and any t 2 T , the exploration matrix Qt = Qt (A) is irreducible and symmetric and the incum-
bents�transition matrix Mt =Mt (A) is aperiodic, irreducible, and reversible, with stationary distribution

mt (a;A) =
e�(t)v(a)+&(a)P
b2A e

�(t)v(b)+&(b)
8a 2 A

In particular, limn!1M
n
t (A)� = mt (�; A) for all A 2 A and all � 2 �(A).

52On reversibility, see, e.g., Kelly (2011).
53As Geyer (2011, p. 6) writes �All known methods for constructing transition probability mechanisms that preserve a

speci�ed equilibrium distribution in non-toy problems are ... reversible.�
54See, again, Baldassi et al. (2020b) and Valkanova (2021).
55In practice, once v, �, and � are estimated in the lab, then checking whether DDM(v; �; �) satis�es Gibbs Transition

Consistency and transitivity is a matter of hypothesis testing. For example, Milosavljevic et al. (2010) cannot reject the
nullity of �, and a fortiori these weaker assumptions.
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This result concludes our analysis by extending the identi�cation and cross-validation procedure that
we described in Section 2.3 to the general, possibly biased, case. Table (15) becomes

Inner Outer
Neural utility v Psychometric utility u

Threshold � Inverse noise 1=�

Starting point bias & Behavioral bias �

where the Gibbs density & corresponding to the starting point function � is shown to be the counterpart of
initial bias �. As mentioned, the neuroscience literature and the rational inattention literature interpreted
these parameters in the same way, but the formal connection between them has been so far elusive.
Theorem 13 reveals the connection and shows how the Metropolis-DDM algorithm (approximately)

generates softmax probabilities, thus implementing the optimal information acquisition strategy of Matejka
and McKay (2015). In turn, the axiomatic representation Theorem 7 characterizing the latter, provides
testable implications for the former.56 For brevity, we omit the, by now, routine details of identi�cation
and cross-validation that parallel those spelled out in Section 2.3.

4 Concluding remarks

In a few concluding remarks, we explore limitations and possible future extensions of our analysis.

4.1 Latency

Our main interpretation of t is as the amount of time available to gather and process new additional
evidence when facing a decision problem. In Section 3, at the �limit deadline�t = 0 only the immediately
available prior information can then be used by the agent to make a decision.
Going back to the �rst example in the introduction of a trader deciding among alternative investments,

t = 0 is an abstraction for the fact that he has to choose �immediately,�that is, within the smallest possible
amount of time without looking at his terminal; instead, t = 10 means that the trader has 10 seconds to
look at the terminal and decide.
The �immediately�available prior information about the alternative investments resides in the trader�s

memory and builds on previous experience. As such, it must be quickly retrieved, a process which however
�in reality �takes some time " > 0 called latency. This " is the smallest possible amount of time after
which a decision maker who has to choose immediately is able to answer. Thus, p0 (a;A) corresponds,
more precisely, to p" (a;A), while pt (a;A) corresponds to p"+t (a;A). Moreover, " might depend on A, with
larger sets commanding larger latency. This leads to a model where pt (a;A) is replaced by p"(A)+t (a;A),
so that

p"(A)+t (a;A) =
e
u(a)
�(t)

+�(a)P
b2A e

u(b)
�(t)

+�(b)

and, for t = 0,

p"(A) (a;A) =
e�(a)P
b2A e

�(b)

All of our results continue to hold in this more sophisticated setting. Thus, our �abuse�in Section 3 consists
in writing pt (a;A) instead of p"(A)+t (a;A). This abuse is practically negligible when the minimum element
of T is large relative to " (it is safe to assume that " is smaller than a second). What happens when the
experimenter gives the subject deadlines that are smaller than " is an interesting research question that
goes beyond the scope of this paper.
56If numerical convergence is achieved, see the discussion in Section 2.3.
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4.2 Beyond softmax

To put our softmax revealed preference analysis (Section 3) in a wider perspective we brie�y discuss a
general speci�cation of a random choice process. In particular, in the next de�nition we generalize to
our deliberation context the de�nition of utility for random choice rules introduced by Debreu (1958) and
Davidson and Marschak (1959).

De�nition 8 A psychometric utility function u and an initial bias � on X rationalize a random choice
process fptg if, at each deliberation time t and all alternatives a 6= b and c 6= d in X:

u (a)� u (b) � u (c)� u (d) and � (a)� � (b) � � (c)� � (d) =) pt (a; b) � pt (c; d) :

It is easy to see that this amounts to requiring the existence, at each deliberation time t, of a time-
dependent function �t, increasing in both arguments, such that

pt (a; b) = �t (u (a)� u (b) ; � (a)� � (b))

for all distinct alternatives a; b 2 X.57 Softmax is the special case

�t (x; y) =
1

1 + e�
x
�(t)

�y

In fact, in the binary case the softmax formula becomes:

pt (a; b) =
1

1 + e�
u(a)�u(b)

�(t)
�[�(a)��(b)]

In the presence of bias, a pair (u; �) is thus needed to understand random choice processes, u alone
is no longer enough �as it was, instead, in the analyses of Debreu, Davidson, and Marschak of random
choice rules. The noise � is peculiar to the softmax case, where it parameterizes the exponential form of
�t.
A natural question, which may be explored in future research, is how the analysis of Debreu (1958) may

generalize in this setup, determining which conditions on a random choice process ensure the existence
of the pair (u; �). A result along these lines would be in relation to Debreu (1958) what our softmax
representation theorem (Theorem 7) is to Luce (1959).

4.3 Testing of the Metropolis-DDM algorithm and possible extensions

A novel object such as the Metropolis-DDM algorithm calls for accurate experimental tests, both based
on existing datasets and on ad hoc experiments focused to trace its speci�c moving parts. This research is
ongoing, it rests on the dialogue between axioms and mechanisms introduced in this paper, but goes well
beyond the scope of this work. More in general, the hypothesis that sequential binary comparisons form
the basic structure of multialternative choice remains an open challenge that we plan to explore.
A natural extension of the Metropolis-DDM is obtained by considering either more general DDMs

� like the ones with random starting points à la Ratcli¤ et al. (2016), or with collapsing barriers à la
Churchland, Kiani, and Shadlen (2008), or with attentional weights à la Krajbich, Armel, and Rangel
(2010) �or recent non-DDM models �like the optimal coding models of Rustichini and Padoa Schioppa
(2015) and Rustichini et al. (2017), or the extrema detection models of Stine et al. (2020). In all these
cases, very weak assumptions guarantee that the resulting algorithm has a stationary distribution which
approximates the resulting stochastic choice behavior; but, since these models do not have closed form
binary choice probabilities, the chances of �nding a closed form for such a stationary distribution do not
seem to be high; but see Baldassi et al. (2020b).

57The real-valued function �t has domain (Imu� Imu)� (Im�� Im�).
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4.4 Quantal response equilibrium

The softmax functional form can be regarded as a formalization of the Discovered Preference Hypothesis
(DPH) outlined in Plott (1996). According to this hypothesis, decision makers learn how their basic needs
are satis�ed by the di¤erent alternatives in the choice environment through a process of re�ection and
practice that, in the long run, leads to optimizing behavior.
Re�ection is readily captured in our model by the deliberation time. If one considers applications to

repeated choice situations, the DPH points to a di¤erent natural interpretation of the set T . Instead of a
deadline, each t of T may represent the number of times that the decision maker has been facing choice
problem A. Under this interpretation, softmax can be seen as capturing preference discovery through
practice.
MNL, that is, unbiased softmaximization is the form that preference discovery takes in the quantal

response equilibrium (QRE) theory of McKelvey and Palfrey (1995). In their theory, t is the number of
times an agent played the game, and thus measures his experience level, u (a) is the expected payo¤ of
action a, and � (t) indexes the agent�s degree of rationality. From the original data analysis of McKelvey
and Palfrey (1995) to the recent Agranov, Caplin, and Tergiman (2015), Goeree, Holt, and Palfrey (2016),
and Ortega and Stocker (2016) evidence seems to suggest that, for sophisticated players, the function �
decreases as time passes and the decision making environment is better understood.58

Our axiomatic and neuro-computational characterizations of MNL can thus be seen as alternative
foundations of QRE. The �rst identi�es the discovery outcome, the second explains the discovery process.
QRE is thus the equilibrium concept that corresponds to the decision theory developed in this paper.
Goeree, Holt and Palfrey (2016) give a broad perspective of its di¤erent applications.59
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