FINAL EXAMINATION

Answer two of the following three questions.

1. Consider an overlapping generations economy in which the representative consumer born in period $t, t=1,2, \ldots$, has the utility function over consumption of the single good in periods t and $t+1$

$$
u\left(c_{t}^{t}, c_{t+1}^{t}\right)=\log c_{t}^{t}+c_{t+1}^{t}
$$

and endowments $\left(w_{t}^{t}, w_{t+1}^{t}\right)=\left(w_{1}, w_{2}\right)$. (Notice, in particular, that the utility function is not $\log c_{t}^{t}+\log c_{t+1}^{t}$.) Suppose that the representative consumer in the initial old generation has the utility function

$$
u^{0}\left(c_{1}^{0}\right)=c_{1}^{0}
$$

and endowment $w_{1}^{0}=w_{2}$ of the good in period 1 and endowment m of fiat money.
(a) Describe an Arrow-Debreu market structure for this economy, explaining when markets are open, who trades with whom, and so on. Define an Arrow-Debreu equilibrium for this economy.
(b) Describe a sequential market structures for this economy, explaining when markets are open, who trades with whom, and so on. Define a sequential markets equilibrium for this economy.
(c) Suppose that $m=0$. Calculate both the Arrow-Debreu equilibrium and the sequential markets equilibrium.
(d) Define a Pareto efficient allocation. Suppose that $w_{1}<1$. Is the equilibrium allocation in part c Pareto efficient? Explain carefully why or why not.
(e) Suppose now that there are two types of consumers in each generation. The representative consumer of type $i, i=1,2$, born in period $t, t=1,2, \ldots$, has the utility function over consumption of the single good in periods t and $t+1$

$$
u_{i}\left(c_{t}^{i t}, c_{t+1}^{i t}\right)=\log c_{t}^{i t}+\gamma_{i} c_{t+1}^{i t}
$$

and endowments $\left(w_{t}^{i t}, w_{t+1}^{i t}\right)=\left(w_{1}^{i}, w_{2}^{i}\right)$. Suppose that the representative consumer of type i, $i=1,2$, in the initial old generation has the utility function

$$
u_{i 0}\left(c_{1}^{i 0}\right)=c_{1}^{i 0}
$$

and endowment $w_{1}^{i 0}=w_{2}^{i}$ of the good in period 1 and endowment m^{i} of fiat money. Define an Arrow-Debreu equilibrium for this economy. Define a sequential markets equilibrium.
2. Consider the optimal growth problem

$$
\begin{array}{ll}
\max & \sum_{t=0}^{\infty} \beta^{t} \log c_{t} \\
\text { s.t. } & c_{t}+k_{t+1} \leq \theta k_{t}^{\alpha} \\
& c_{t}, k_{t} \geq 0 \\
& k_{0}=\bar{k}_{0} .
\end{array}
$$

Here $1>\alpha>0,1>\beta>0, \theta>0$
(a) Write down the Euler conditions and the transversality condition for this problem. Calculate the steady state values of c and k.
(b) Write down the functional equation that defines the value function for this problem. Guess that the value function has the form $a_{0}+a_{1} \log k$. Calculate the policy function.
(c) Verify that the policy function in part b generates a path for capital that satisfies the Euler conditions and transversality condition in part a.
(d) Define sequential markets equilibrium for this economy. Define an Arrow-Debreu equilibrium.
(e) Consider now the optimal growth problem

$$
\begin{gathered}
\sum_{t=0}^{\infty} \beta^{t}\left(\gamma \log c_{t}+(1-\gamma) \log \left(1-\ell_{t}\right)\right) \\
\text { s.t. } \quad c_{t}+k_{t+1} \leq \theta k_{t}^{\alpha} \ell_{t}^{1-\alpha} \\
c_{t}, k_{t} \geq 0 \\
k_{0}=\bar{k}_{0} .
\end{gathered}
$$

Write down the functional equation that defines the value function for this problem. Guess that the value function has the form $a_{0}+a_{1} \log k$. Calculate the policy function. [Hint: Guess that $\left.\ell_{t}=\bar{\ell}.\right]$
3. Consider an economy with a representative, infinitely lived consumer who has the utility function

$$
\sum_{t=0}^{\infty} \beta^{t} \log c_{t}
$$

where $0<\beta<1$. The consumer owns one unit of labor in each period and \bar{k}_{0} units of capital in period 0 . Suppose that feasible consumption/investment plans satisfy

$$
c_{t}+k_{t+1}-(1-\delta) k_{t} \leq \theta k_{t}^{\alpha} \ell_{t}^{1-\alpha} .
$$

(a) Suppose that the consumer borrows b_{t+1} bonds in period t to be paid off in period $t+1$. The consumer's initial endowment of bonds is $\bar{b}_{0}=0$, the wage rate in period t is w_{t}, the rental rate on capital is r_{t}^{k}, and the interest rate on bonds is r_{t}^{b}. Write down the consumer's utility maximization problem in a sequential markets economy. Explain why you need to include a constraint to rule out Ponzi schemes. Write down the Euler conditions and the transversality conditions for this problem. Define a sequential markets equilibrium with borrowing and lending for this economy. Prove that in equilibrium $r_{t}^{k}-\delta=r_{t}^{b}$ if $k_{t}>0$.
(b) Suppose that the consumer sells his endowment of capital to the firm in period 0 . Thereafter, firms buy and sell capital from each other. Describe the production set for the Arrow-Debreu economy, the set of feasible $k_{0}, k_{1}, \ldots, \ell_{0}, \ell_{1}, \ldots, c_{0}, c_{1}, \ldots$. Define the Arrow-Debreu equilibrium for this economy.
(c) Carefully state theorems that relate the equilibrium allocations in parts a and b .
(d) Suppose that now there are two types of consumers. The representative consumer of type 1 has the endowment of labor ($\left.\bar{\ell}_{0}^{1}, \bar{\ell}_{1}^{1}, \bar{\ell}_{2}^{1}, \bar{\ell}_{3}^{1}, \ldots\right)=(2,1,2,1, \ldots)$ and the endowment of capital \bar{k}_{0}^{1}. The representative consumer of type 2 has the endowment of labor $\left(\bar{\ell}_{0}^{2}, \bar{\ell}_{1}^{2}, \bar{\ell}_{2}^{2}, \bar{\ell}_{3}^{2}, \ldots\right)=(1,2,1,2, \ldots)$ and the endowment of capital \bar{k}_{0}^{2}. Define a sequential markets equilibrium for this economy.
(e) Does the equilibrium allocation/production plan in part d solve a dynamic programming problem? If it does, write down the Bellman's equation for this problem. If it does not, explain carefully why it does not.

