MIDTERM EXAMINATION

Answer two of the following three questions.

1. Consider an economy with two infinitely lived consumers. There is one good in each period. Consumer $i, i=1,2$, has the utility function

$$
\sum_{t=0}^{\infty} \beta^{t} \log c_{t}^{i}
$$

Here $\beta, 0<\beta<1$, is the common discount factor. Each of the consumers is endowed with a sequence of goods:

$$
\begin{aligned}
& \left(w_{0}^{1}, w_{1}^{1}, w_{2}^{1}, w_{3}^{1}, \ldots\right)=(3,1,3,1, \ldots) \\
& \left(w_{0}^{2}, w_{1}^{2}, w_{2}^{2}, w_{3}^{2}, \ldots\right)=(1,1,1,1, \ldots)
\end{aligned}
$$

There is no production or storage.
(a) Describe an Arrow-Debreu market structure for this economy, explaining when markets are open, who trades with whom, and so on. Define an Arrow-Debreu equilibrium for this economy.
(b) Describe a sequential market structures for this economy, explaining when markets are open, who trades with whom, and so on. Define a sequential markets equilibrium for this economy.
(c) Carefully state a proposition or propositions that establish the essential equivalence of the equilibrium concept in part a with that in part b. Be sure to specify the relationships between the objects in the Arrow-Debreu equilibrium and those in the sequential markets equilibrium. (You are not asked to prove this proposition or propositions.)
(d) Calculate the Arrow-Debreu equilibrium for this economy. (This equilibrium is unique, but you do not have to prove this fact.) Use this answer and the answer to part c to calculate the sequential markets equilibrium.
(e) Define a Pareto efficient allocation for this economy. Prove that the allocations in parts a and b are Pareto efficient.
2. Consider an overlapping generations economy in which the representative consumer born in period $t, t=1,2, \ldots$, has the utility function over consumption of the single good in periods t and $t+1$

$$
u\left(c_{t}^{t}, c_{t+1}^{t}\right)=\log c_{t}^{t}+3 \log c_{t+1}^{t}
$$

and endowments $\left(w_{t}^{t}, w_{t+1}^{t}\right)=\left(w_{1}, w_{2}\right)$. Suppose that the representative consumer in the initial old generation has the utility function

$$
u^{0}\left(c_{1}^{0}\right)=3 \log c_{1}^{0}
$$

and endowment $w_{1}^{0}=w_{2}$ of the good in period 1 and endowment m of fiat money.
(a) Describe an Arrow-Debreu market structure for this economy, explaining when markets are open, who trades with whom, and so on. Define an Arrow-Debreu equilibrium for this economy.
(b) Describe a sequential market structures for this economy, explaining when markets are open, who trades with whom, and so on. Define a sequential markets equilibrium for this economy.
(c) Suppose that $m=0$. Calculate both the Arrow-Debreu equilibrium and the sequential markets equilibrium.
(d) Define a Pareto efficient allocation. Suppose that $\left(w_{1}, w_{2}\right)=(2,2)$. Is the equilibrium allocation in part c Pareto efficient? Explain carefully why or why not.
(e) Relax now the assumption that the good is not storable. Suppose instead that 1 unit of the good in period $t, t=1,2, \ldots$, can be transformed into $\theta>0$ units of the good in period $t+1$. Define a sequential markets equilibrium for this economy.
3. Consider an economy with a representative consumer with the utility function

$$
\sum_{t=0}^{\infty} \beta^{t} \log c_{t}
$$

where $0<\beta<1$. This consumer has an endowment of $\bar{\ell}_{t}=1$ units of labor in each period and \bar{k}_{0} units of capital in period 0 . Feasible allocation/production plans satisfy

$$
c_{t}+k_{t+1} \leq \theta k_{t}^{\alpha} \ell_{t}^{1-\alpha} .
$$

(a) Describe a sequential markets structure for this economy, explaining when markets are open, who trades with whom, and so on. Define a sequential markets equilibrium.
(b) Define a Pareto efficient allocation/production plan. Prove that a sequential markets allocation/production plan is Pareto efficient.
(c) Write down Bellman's equation that defines the value function for the dynamic programming problem that a Pareto efficient allocation/production plan solves. Explain how you would derive the policy function $k^{\prime}=g(k)$ from this value function. Guess that the value function has the form $V(k)=a_{0}+a_{1} \log k$ for some yet-to-be-determined constants a_{0} and a_{1}. Solve for the policy function $k^{\prime}=g(k)$.
(d) Use the answer to part c to calculate the sequential markets equilibrium of this economy. (That is, provide explicit formulas for all of the objects that make up the definition of a sequential markets equilibrium.)
(e) Suppose now that the utility function is

$$
\sum_{t=0}^{\infty} \beta^{t}\left(\gamma \log c_{t}+(1-\gamma) \log \left(1-\ell_{t}\right)\right)
$$

where $1 \geq \gamma>0$. Define a sequential markets equilibrium.

