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MIDTERM EXAMINATION 

Answer two of the following three questions. 

1. Consider an economy with two infinitely lived consumers.  There is one good in each period.  
Consumer i , 1, 2i  , has the utility function 
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Here  , 0 1  , is the common discount factor.  Each of the consumers is endowed with a 
sequence of goods: 
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There is no production or storage. 
 
(a) Describe an Arrow-Debreu market structure for this economy, explaining when markets are 
open, who trades with whom, and so on. Define an Arrow-Debreu equilibrium for this economy. 
 
(b) Describe a sequential market structures for this economy, explaining when markets are open, 
who trades with whom, and so on. Define a sequential markets equilibrium for this economy. 
 
(c) Carefully state a proposition or propositions that establish the essential equivalence of the 
equilibrium concept in part a with that in part b.  Be sure to specify the relationships between the 
objects in the Arrow-Debreu equilibrium and those in the sequential markets equilibrium.  (You 
are not asked to prove this proposition or propositions.) 
 
(d) Calculate the Arrow-Debreu equilibrium for this economy.  (This equilibrium is unique, but 
you do not have to prove this fact.)  Use this answer and the answer to part c to calculate the 
sequential markets equilibrium. 
 
(e) Define a Pareto efficient allocation for this economy.  Prove that the allocations in parts a 
and b are Pareto efficient. 
 
 



2. Consider an overlapping generations economy in which the representative consumer born in 
period ,,2,1, tt has the utility function over consumption of the single good in periods t  and 

1t  
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and endowments 1 1 2( , ) ( , )t t
t tw w w w  . Suppose that the representative consumer in the initial old 

generation has the utility function  

0 0 0
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and endowment 2
0
1 ww   of the good in period 1 and endowment m  of fiat money. 

(a) Describe an Arrow-Debreu market structure for this economy, explaining when markets are 
open, who trades with whom, and so on. Define an Arrow-Debreu equilibrium for this economy. 

(b) Describe a sequential market structures for this economy, explaining when markets are open, 
who trades with whom, and so on. Define a sequential markets equilibrium for this economy. 

(c) Suppose that 0m  .  Calculate both the Arrow-Debreu equilibrium and the sequential 
markets equilibrium. 

(d) Define a Pareto efficient allocation.  Suppose that 1 2( , ) (2,2)w w  .  Is the equilibrium 

allocation in part c Pareto efficient?  Explain carefully why or why not. 

(e) Relax now the assumption that the good is not storable.  Suppose instead that 1 unit of the 
good in period t , 1, 2,...t  , can be transformed into 0   units of the good in period 1t  .  
Define a sequential markets equilibrium for this economy. 

 



3. Consider an economy with a representative consumer with the utility function 
 

0
logt

tt
c

  

 
where 0 1  .  This consumer has an endowment of 1t   units of labor in each period and 

0k  units of capital in period 0.  Feasible allocation/production plans satisfy 
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(a) Describe a sequential markets structure for this economy, explaining when markets are open, 
who trades with whom, and so on. Define a sequential markets equilibrium. 
 
(b) Define a Pareto efficient allocation/production plan.  Prove that a sequential markets 
allocation/production plan is Pareto efficient. 
 
(c) Write down Bellman’s equation that defines the value function for the dynamic programming 
problem that a Pareto efficient allocation/production plan solves.  Explain how you would derive 
the policy function ' ( )k g k  from this value function.  Guess that the value function has the 

form 0 1( ) logV k a a k   for some yet-to-be-determined constants 0a  and 1a .  Solve for the 

policy function ' ( )k g k . 
 
(d) Use the answer to part c to calculate the sequential markets equilibrium of this economy.  
(That is, provide explicit formulas for all of the objects that make up the definition of a 
sequential markets equilibrium.) 
 
(e) Suppose now that the utility function is 
 

 
0

log (1 ) log(1 )t
t tt

c  


     

 
where 1 0  .  Define a sequential markets equilibrium. 

 

 
 


