

(3)
$$\lim_{t\to\infty}\beta^t F_\kappa(x_t^*,x_{t+1}^*)\cdot x_t^*=0.$$

This condition has the following interpretation. Since the vector of derivatives F_n is the vector of marginal returns from increases in the current state variables, the inner product $F_n \cdot x$ is a kind of total value in period t of the vector of state variables. For example, in the many-sector growth model, F_n is the vector of capital goods prices. In this case (3) requires that the present discounted value of the capital stock in period t, evaluated using period t market prices, tends to zero as t tends to infinity. Whether or not one finds these market interpretations helpful, we have the following result.

THEOREM 4.15 (Sufficiency of the Euler and transversality conditions) Let $X \subset \mathbb{R}^l_+$, and let F satisfy Assumptions 4.3–4.5, 4.7, and 4.9. Then the sequence $\{x_{i+1}^*\}_{i=0}^{\infty}$, with $x_{i+1}^* \in int \Gamma(x_i^*)$, $t = 0, 1, \ldots$, is optimal for the problem (SP), given x_0 , if it satisfies (2) and (3).

Proof. Let x_0 be given; let $\{x_i^*\} \in \Pi(x_0)$ satisfy (2) and (3); and let $\{x_i\} \in \Pi(x_0)$ be any feasible sequence. It is sufficient to show that the difference, call it D, between the objective function in (SP) evaluated at $\{x_i^*\}$ and at $\{x_i\}$ is nonnegative.

Since F is continuous, concave, and differentiable (Assumptions 4.4, 4.7, and 4.9),

$$D = \lim_{T\to\infty} \sum_{i=0}^{T} \beta^{i} [F(x_{i}^{*}, x_{i+1}^{*}) - F(x_{i}, x_{i+1})]$$

$$\geq \lim_{T\to\infty}\sum_{i=0}^T \beta^i [F_x(x_i^*, x_{i+1}^*) \cdot (x_i^* - x_i) + F_y(x_i^*, x_{i+1}^*) \cdot (x_{i+1}^* - x_{i+1})].$$

Since $x_0^* - x_0 = 0$, rearranging terms gives

$$D \geq \lim_{T \to \infty} \left\{ \sum_{t=0}^{T-1} \beta^{t} [F_{y}(x_{t}^{*}, x_{t+1}^{*}) + \beta F_{x}(x_{t+1}^{*}, x_{t+2}^{*})] \cdot (x_{t+1}^{*} - x_{t+1}) + \beta^{T} F_{y}(x_{T}^{*}, x_{T+1}^{*}) \cdot (x_{T+1}^{*} - x_{T+1}) \right\}.$$

Since $\{x_i^*\}$ satisfies (2), the terms in the summation are all zero. Therefore, substituting from (2) into the last term as well and then using (3) gives

$$D \ge -\lim_{T \to \infty} \beta^T F_x(x_T^*, x_{T+1}^*) \cdot (x_T^* - x_T)$$

$$\ge -\lim_{T \to \infty} \beta^T F_x(x_T^*, x_{T+1}^*) \cdot x_T^*,$$

where the last line uses the fact that $F_x \ge 0$ (Assumption 4.5) and $x_t \ge 0$, all t. It then follows from (3) that $D \ge 0$, establishing the desired result.