PROBLEM SET \#1

1. Consider an economy two infinitely lived consumers, each of whom has the same utility function,

$$
u\left(c_{0}^{i}, c_{1}^{i}, \ldots\right)=\sum_{t=0}^{\infty} \beta^{t} \log c_{t}^{i}
$$

where $0<\beta<1$. Suppose that consumer 1 has the endowments

$$
\left(w_{0}^{1}, w_{1}^{1}, w_{2}^{1}, w_{3}^{1}, \ldots\right)=(4,2,4,2, \ldots),
$$

and consumer 2 has the endowments

$$
\left(w_{0}^{2}, w_{1}^{2}, w_{2}^{2}, w_{3}^{2}, \ldots\right)=(2,4,2,4, \ldots) .
$$

a) Describe an Arrow-Debreu market structure for this economy, explaining when markets are open, who trades with whom, and so on. Define an Arrow-Debreu equilibrium.
b) Define a Pareto efficient allocation for this economy. Calculate a Pareto efficient allocation by maximizing a weighted sum of utilities, $\alpha_{1} u_{1}+\alpha_{2} u_{2}$.
c) Define an Arrow-Debreu equilibrium with transfers. Find the transfer payments necessary to implement the Pareto efficient allocation in part b as equilibrium with transfers. Demonstrate that the transfer payments are homogeneous of degree one in (α_{1}, α_{2}) and sum to 0 .
d) Find the transfer payments necessary to implement the allocation $\left(c_{t}^{1}, c_{t}^{2}\right)=(3,3)$ as an equilibrium with transfers.
e) Calculate the (unique) Arrow-Debreu equilibrium of this economy.
f) Define a sequential markets equilibrium. Calculate the unique sequential markets equilibrium of the economy.
2. Consider a simple overlapping generations economy in which the consumer born in period $t, t=1,2, \ldots$, has the utility function

$$
u\left(c_{t}^{t}, c_{t+1}^{t}\right)=c_{t}^{t}+\left[\left(c_{t+1}^{t}\right)^{b}-1\right] / b
$$

where $b<1$. Suppose that his endowment is $\left(w_{t}^{t}, w_{t+1}^{t}\right)=\left(w_{1}, w_{2}\right)$.
a) What is the utility function in the case where $b=0$? [Hint: use l'Hôpital's rule.]
b) Write down the utility maximization problem in an environment with Arrow-Debreu markets. Derive the excess demand functions $y\left(p_{t}, p_{t+1}\right)$ and $y\left(p_{t}, p_{t+1}\right)$. Demonstrate that they are homogeneous of degree zero and that they satisfy Walras's law.
c) Suppose that the first generation has an excess demand function of the form

$$
z_{0}\left(p_{1}, m\right)=\frac{m}{p_{1}} .
$$

Explain the role of m. Define an Arrow-Debreu equilibrium of this model. Write down the equilibrium conditions using the excess demand functions.
d) Find an expression for the offer curve for this model. (Hint: you have to solve for y as a function of z.)
e) Suppose that $w_{1}=1$ and $w_{2}=0.25$. Draw the offer curve for the three cases $b=0.5$, $b=0$, and $b=-1$.
3. Consider an overlapping generations economy in which the representative consumer in generation $t, t=1,2, \ldots$, has preferences over the consumption of the single good in each of the two periods of her life given by the utility function

$$
u\left(c_{t}^{t}, c_{t+1}^{t}\right)=\log c_{t}^{t}+\log c_{t+1}^{t} .
$$

This consumer is endowed with quantities of labor $\left(\ell_{t}^{t}, \ell_{t+1}^{t}\right)=\left(\ell_{1}, \ell_{2}\right)$. In addition there is a generation 0 who representative consumer lives only in period 1 and has the utility function

$$
u^{0}\left(c_{1}^{0}\right)=\log c_{1}^{0},
$$

and the endowment of ℓ_{2} units of labor and \bar{k}_{1} units of capital in period 1 . In addition, this consumer has an endowment of fiat money m, which can be positive, negative or zero.

The production function is

$$
f\left(k_{t}, \ell_{t}\right)=\theta k_{t}^{\alpha} \ell_{t}^{1-\alpha},
$$

and capital depreciates at the rate δ per period, $0 \leq \delta \leq 1$.
a) Define a sequential market equilibrium for this economy.
b) Define an Arrow-Debreu equilibrium for this economy. State and prove two theorems that establish the equivalence between a sequential market equilibrium and an Arrow-Debreu equilibrium.
c) Reduce the equilibrium conditions to a second-order difference equation in k_{t}, that is, an equation in k_{t+1}, k_{t}, k_{t-1} that includes no other endogenous variables.
d) Suppose that $m=0$. Reduce the equilibrium conditions to a first-order difference equation in k_{t}. (Hint: in this case you know that the savings of generation t in period t in the sequential market equilibrium must equal k_{t+1}.)
4. Suppose that $\theta=100, \alpha=0.4, \delta=0.8, \ell_{1}=1$, and $\ell_{2}=0$ in question 3 .
a) Define a steady state for this economy. Calculate the two steady states.
b) Suppose that $\bar{k}_{1}=10$ and $m=0$. Use your answer to question 3 d to calculate the equilibrium in the first 10 periods both by hand and on the computer.
c) Suppose now that $\ell_{2}=0.5$. Repeat parts a and b , doing your calculations on the computer.
d) Suppose now that $\ell_{2}=2$. Repeat parts a and b , doing your calculations on the computer.

