## PROBLEM SET \#2

1. Consider an economy with a representative, infinitely lived consumer who has the utility function

$$
\sum_{t=0}^{\infty} \beta^{t} \log c_{t}
$$

where $0<\beta<1$. The consumer owns one unit of labor in each period and $\bar{k}_{0}$ units of capital in period 0 . The depreciation rate on capital is $\delta$.
a) Suppose that the consumer borrows $b_{t+1}$ bonds in period $t$ to be paid off in period $t+1$. The consumer's initial endowment of bonds is $\bar{b}_{0}=0$, the wage rate in period $t$ is $w_{t}$, the rental rate on capital is $r_{t}^{k}$, and the interest rate on bonds is $r_{t}^{b}$. Write down the consumer's utility maximization problem in a sequential markets economy. Explain why you need to include a constraint to rule out Ponzi schemes. Write down the Euler conditions and the transversality conditions for this problem.

Suppose that feasible consumption/investment plans satisfy

$$
c_{t}+k_{t+1}-(1-\delta) k_{t} \leq F\left(k_{t}, \ell_{t}\right)
$$

where $F\left(k_{t}, \ell_{t}\right)=\theta k_{t}^{\alpha} \ell_{t}^{1-\alpha}$.
b) Define a sequential markets equilibrium with borrowing and lending for this economy. Prove that in equilibrium $r_{t}^{k}-\delta=r_{t}^{b}$ if $k_{t}>0$.
c) Suppose that the consumer sells his endowment of capital to the firm in period 0 . Thereafter, firms buy and sell capital from each other. Describe the production set for the Arrow-Debreu economy, the set of feasible $k_{0}, k_{1}, \ldots, \ell_{0}, \ell_{1}, \ldots, c_{0}, c_{1}, \ldots$.
d) Define the Arrow-Debreu equilibrium for this economy.
e) Suppose that the consumer can buy new capital in each period and rent capital services to the firm. Define the Arrow-Debreu equilibrium for this economy.
f) Carefully state theorems that relate the equilibrium allocations in parts (b), (d), and (e).
2. Consider the social planning problem

$$
\begin{array}{ll}
\max & \sum_{t=0}^{\infty} \beta^{t} \log c_{t} \\
\text { s.t. } & c_{t}+k_{t+1} \leq \theta k_{t}^{\alpha} \\
& c_{t}, k_{t} \geq 0 \\
& k_{0} \leq \bar{k}_{0} .
\end{array}
$$

a) Write down the Euler conditions and the transversality condition for this problem.
b) Let $v\left(k_{t}, k_{t+1}\right)$ be the solution to

$$
\begin{array}{ll}
\max _{c_{t}} & \log c_{t} \\
\text { s.t. } & c_{t}+k_{t+1} \leq \theta k_{t}^{\alpha} \\
& c_{t} \geq 0
\end{array}
$$

for fixed $k_{t}, k_{t+1}$. What is $v\left(k_{t}, k_{t+1}\right)$ ? What conditions do $k_{t}$ and $k_{t+1}$ need to satisfy to ensure $c_{t}, k_{t+1}, \geq 0$ ? If we write these conditions as $k_{t+1} \in \Gamma\left(k_{t}\right)$, what is $\Gamma\left(k_{t}\right)$ ?
c) Write down the Euler conditions and the transversality condition for the problem

$$
\begin{aligned}
\max & \sum_{t=0}^{\infty} \beta^{t} v\left(k_{t}, k_{t+1}\right) \\
\text { s.t. } & k_{t+1} \in \Gamma\left(k_{t}\right) \\
& k_{0} \leq \bar{k}_{0} .
\end{aligned}
$$

d) Prove that a sequence $\hat{k}_{0}, \hat{k}_{1}, \ldots$ solves the conditions in part (c) if an only if there exist sequences of Lagrange multipliers $\hat{p}_{0}, \hat{p}_{1}, \ldots$ and of consumption $\hat{c}_{0}, \hat{c}_{1}, \ldots$ such that ( $\hat{c}_{0}, \hat{c}_{1}, \ldots, \hat{k}_{0}, \hat{k}_{1}, \ldots, \hat{p}_{0}, \hat{p}_{1}, \ldots$ ) satisfy the conditions in part (a).
e) Prove that, if a sequence $\hat{k}_{0}, \hat{k}_{1}, \ldots$ satisfies the Euler conditions and transversality condition in part (c), then it solves the related planning problem. (Hint: you can adapt the general proof on pp. 98-99 of Stokey, Lucas, and Prescott to these specific functions.)
3. Let $v\left(k_{t}, k_{t+1}\right)$ and $\Gamma\left(k_{t}\right)$ be defined as in part (b) of question 2.
a) Consider the dynamic programming problem with functional equation

$$
\begin{aligned}
& V(k)=\max v\left(k, k^{\prime}\right)+\beta V\left(k^{\prime}\right) \\
& \text { s.t. } k^{\prime} \in \Gamma(k) .
\end{aligned}
$$

Guess that $V(k)$ has the form $a_{1}+a_{2} \log k$ and solve for $a_{1}$ and $a_{2}$.
b) What is the policy function $g(k)$ such that $k^{\prime}=g(k)$ ? Verify that $k_{t+1}=g\left(k_{t}\right)$ satisfies the Euler equations and the transversality condition in part (c) of question 2.
c) Try to approximate $V(k)$ : Guess that $V_{0}(k)=0$ for all $k$ and use the iterative updating rule

$$
\begin{gathered}
V_{n+1}(k)=\max v\left(k, k^{\prime}\right)+\beta V_{n}\left(k^{\prime}\right) \\
\text { s.t. } \quad k^{\prime} \in \Gamma(k) .
\end{gathered}
$$

Calculate the functions $V_{1}, V_{2}, V_{3}$ and $V_{4}$.
4. Consider an economy specified as in question 1 except that the representative consumer has the utility function

$$
\sum_{t=0}^{\infty} \beta^{t}\left(\log c_{t}+\gamma \log x_{t}\right)
$$

where $x_{t}$ is the consumption of leisure.
a) Define a sequential markets equilibrium for this economy.
b) Define an Arrow-Debreu equilibrium for this economy.
c) Let $v\left(k_{t}, k_{t+1}\right)$ be the solution to

$$
\left.\begin{array}{rl}
\max _{c_{t}, x_{t}, \ell_{t}} & \log c_{t} \\
\text { s.t. } & c_{t}+k_{t+1} \\
& \leq \theta k_{t}^{\alpha} \ell_{t}^{1-\alpha} \\
& x_{t}+\ell_{t}
\end{array}\right] 1
$$

for fixed $k_{t}, k_{t+1}$. Explain carefully how you would calculate $v\left(k_{t}, k_{t+1}\right)$. What conditions do $k_{t}, k_{t+1}$ need to satisfy to ensure $c_{t}, x_{t}, \ell_{t}, k_{t+1} \geq 0$ ? If we write these conditions as $k_{t+1} \in \Gamma\left(k_{t}\right)$, what is $\Gamma\left(k_{t}\right)$ ?

