MACROECONOMIC THEORY ECON 8105

PROBLEM SET #5

1. Consider an economy like that in question 3 on problem set #4 in which the equilibrium allocation is the solution to the optimal growth problem

$$\max E \sum_{t=0}^{\infty} \beta^{t} \left[\theta \log C_{t} + (1-\theta) \log(N_{t}\overline{h} - L_{t}) \right]$$

s.t. $C_{t} + K_{t+1} - (1-\delta)K_{t} \leq e^{z_{t}} (\gamma^{1-\alpha})^{t} A_{0}K_{t}^{\alpha} L_{t}^{1-\alpha}$
 $C_{t}, K_{t} \geq 0$
 $K_{0} = \overline{K}_{0}$
 $N_{t} = \eta^{t} N_{0}$.

Here z_t is a random variable that takes on two values $\overline{z_1} = -\zeta$, $\overline{z_2} = \zeta$, and whose evolution is governed by the stationary, first order Markov chain with transition matrix

$$\Pi = \begin{bmatrix} 1 - \pi & \pi \\ \pi & 1 - \pi \end{bmatrix}.$$

Assume, for the sake of specificity, that, at t = 0, $z_0 = \overline{z_1} = -\zeta$.

a) Define an Arrow-Debreu equilibrium for this economy.

b) Define a sequential markets equilibrium for this economy.

Redefine variables C_t and K_t by dividing by the number of effective working age persons $\tilde{N}_t = \gamma^t N_t = (\gamma \eta)^t N_0$. Divide L_t by N_t :

$$c_{t} = C_{t} / \tilde{N}_{t} = \gamma^{-t} (C_{t} / N_{t})$$

$$k_{t} = K_{t} / \tilde{N}_{t} = \gamma^{-t} (K_{t} / N_{t})$$

$$\ell_{t} = L_{t} / N_{t}.$$

Consider the social planner's problem

$$\max E \sum_{t=0}^{\infty} \beta^{t} \left[\theta \log c_{t} + (1-\theta) \log(\overline{h} - \ell_{t}) \right]$$

s. t. $c_{t} + \gamma \eta k_{t+1} - (1-\delta)k_{t} \le e^{z_{t}} A_{0} k_{t}^{\alpha} \ell_{t}^{1-\alpha}$
 $c_{t}, k_{t} \ge 0, \ \overline{h} \ge \ell_{t} \ge 0$
 $k_{0} = \overline{K}_{0} / N_{0},$

with the associated Bellman's equation

$$V(k, z) = \max \ \theta \log \ c + (1 - \theta) \log(\overline{h} - \ell) + \beta EV(k', z')$$

s. t. $c + \gamma \eta k' - (1 - \delta)k \le e^z A_0 k^{\alpha} \ell^{1 - \alpha}$
 $c, \ k' \ge 0, \ \overline{h} \ge \ell \ge 0$
 $k, \ z \ \text{given.}$

c) Suppose that you have solved this dynamic programming problem and have found the policy functions k' = g(k, z), c = c(k, z), and $\ell = \ell(k, z)$. Explain how you can use these policy functions to calculate the Arrow-Debreu equilibrium.

d) Explain how you can use these policy functions k' = g(k, z), c = c(k, z), and $\ell = \ell(k, z)$ from part c to calculate the sequential markets equilibrium.

2. Consider the problem faced by an unemployed worker searching for a job. Every period that the worker searches, she receives a job offer with the wage w drawn independently from the time invariant probability distribution $F(v) = \text{prob}(w \le v)$, $v \in [0, B]$, B > 0. After receiving the wage offer w the worker faces the choice (1) to accept it or (2) to reject it, receive unemployment benefit b, and search again next period. That is,

$$y_t = \begin{cases} w & \text{if job offer has been accepted} \\ b & \text{if searching} \end{cases}$$

The worker solves

$$\max E \sum_{t=0}^{\infty} \beta^t y_t$$

where $1 > \beta > 0$. Once a job offer has been accepted, there are no fires or quits.

a) Formulate the worker's problem as a dynamic programming problem by writing down Bellman's equation.

b) Using Bellman's equation from part a, characterize the value function V(w) in a graph and argue that the worker's problem reduces to determining a reservation wage \overline{w} such that she accepts any wage offer $w \ge \overline{w}$ and rejects any wage offer $w < \overline{w}$.

c) Consider two economies with different unemployment benefits b_1 and b_2 but otherwise identical. Let \overline{w}_1 and \overline{w}_2 be the reservation wages in these two economies. Suppose that that $b_2 > b_1$. Prove that $\overline{w}_2 > \overline{w}_1$. Provide some intuition for this result.

d) Consider two economies with different wage distributions F_1 and F_2 but otherwise identical. Let \overline{w}_1 and \overline{w}_2 be the reservation wages in these two economies. Define a mean preserving spread. Suppose that F_2 is a mean preserving spread of F_1 . Prove that $\overline{w}_2 > \overline{w}_1$. Provide some intuition for this result.