PROBLEM SET \#2

1. Consider an overlapping generations economy like that in question 5 on problem set 1 in which consumers live for 4 periods. The utility function of the consumer born in period $t, t=1,2, \ldots$, is

$$
u\left(c_{t}^{t}, c_{t+1}^{t}, c_{t+2}^{t}, c_{t+3}^{t}\right)=\log c_{t}^{t}+\beta \log c_{t+1}^{t}+\beta^{2} \log c_{t+2}^{t}+\beta^{3} \log c_{t+3}^{t} .
$$

This consumer is endowed with quantities of labor

$$
\left(\ell_{t}^{t}, \ell_{t+1}^{t}, \ell_{t+2}^{t}, \ell_{t+3}^{t}\right)=\left(\eta^{t-1} \bar{\ell}_{1}, \eta^{t-1} \bar{\ell}_{2}, \eta^{t-1} \bar{\ell}_{3}, \eta^{t-1} \bar{\ell}_{4}\right)
$$

In addition, there are three other consumers, $-2,-1$, and 0 . Consumer -2 has the utility function

$$
u^{-2}\left(c_{1}^{-2}\right)=\log c_{1}^{-2}
$$

and the endowments $\ell_{1}^{-2}=\eta^{-3} \bar{\ell}_{4}, \bar{k}_{1}^{-2}$. Consumer -1 has the utility function

$$
u^{-1}\left(c_{1}^{-1}, c_{2}^{-1}\right)=\log c_{1}^{-1}+\beta \log c_{2}^{-1}
$$

and the endowments $\left(\ell_{1}^{-1}, \ell_{2}^{-1}\right)=\left(\eta^{-2} \bar{\ell}_{3}, \eta^{-2} \bar{\ell}_{4}\right), \bar{k}_{1}^{-1}$. Consumer 0 has the utility function

$$
u^{0}\left(c_{1}^{0}, c_{2}^{0}, c_{3}^{0}\right)=\log c_{1}^{0}+\beta \log c_{2}^{0}+\beta^{2} \log c_{3}^{0}
$$

and endowments $\left(\ell_{1}^{0}, \ell_{2}^{0}, \ell_{3}^{0}\right)=\left(\eta^{-1} \bar{\ell}_{2}, \eta^{-1} \bar{\ell}_{3}, \eta^{-1} \bar{\ell}_{4}\right), \bar{k}_{1}^{0}$. The production function is

$$
f\left(k_{t}, \ell_{t}\right)=A_{t} k_{t}^{\alpha} \ell_{t}^{1-\alpha},
$$

where $A_{t+1}=\gamma A_{t}$, and capital depreciates at the rate δ per period, $0 \leq \delta \leq 1$. There is no fiat money.
a) Define a sequential markets equilibrium for this economy.
b) Define a balanced growth path for this economy. Find the value of $\lambda>0$ such that $k_{t+1}=\lambda k_{t}$ along the balanced growth path.
c) Suppose that, after $T=9$ periods, the capital stock grows at the rate $\lambda-1$. That is, $k_{t+1}=\lambda k_{t}, t=9,10, \ldots$ Reduce the equilibrium conditions in part a to a system of 8
equations in the 8 unknowns $k_{2}, k_{3}, k_{3}, k_{4}, k_{5}, k_{6}, k_{7}, k_{8}$, and k_{9} by considering the market clearing conditions in periods $1,2,3,4,5,6,7$, and 8 .
d) Suppose that $\beta=1, \eta=1.1,\left(\bar{\ell}_{1}, \bar{\ell}_{2}, \bar{\ell}_{3}, \bar{\ell}_{4}\right)=(1.0,1.3,1.5,0.0), A_{1}=100, \gamma=1.2$, $\alpha=0.4, \delta=0.5$. Calculate the balanced growth path in which the savings is equal to capital stock that must be accumulated for next period, $\lambda \hat{k}$. (There is another balanced growth path in which $1+\hat{r}-\delta=\lambda$, but to be in this balanced growth path requires a nonzero amount of fiat money.)
e) Write a computer program to solve the system of equations in part c. Test the program by verifying that, for the right choice of $\bar{k}_{1}^{-2}, \bar{k}_{1}^{-1}, \bar{k}_{1}^{0}$, the balanced growth path is an equilibrium. Let $\bar{k}_{1}^{-2}, \bar{k}_{1}^{-1}$, \bar{k}_{1}^{0} be equal to 80 percent of their balanced growth path values. Calculate the solution to the system of equations. Check whether the equilibrium conditions in periods $9,10,11$, and 12 are satisfied.
f) Now truncate the model at $T=40$. Repeat part e and compare the results.
2. Using data for the United States or some other country, calibrate the parameters β, $\eta,\left(\bar{\ell}_{1}, \bar{\ell}_{2}, \bar{\ell}_{3}, \bar{\ell}_{4}\right), A_{0}, \gamma, \alpha$, and δ.
a) Repeat parts d, e and f of question 1 .
b) Suppose now that the economy is on a balanced growth path in which the population growth rate, $\eta-1$, is at its calibrated level. In period 1 consumers realize that the population growth rate will fall to $\tilde{\eta}-1$. That is, $\left(\ell_{t}^{1}, \ell_{t+1}^{1}, \ell_{t+2}^{1}, \ell_{t+3}^{1}\right)=\left(\bar{\ell}_{1}, \bar{\ell}_{2}, \bar{\ell}_{3}, \bar{\ell}_{4}\right)$ and $\left(\ell_{t}^{t}, \ell_{t+1}^{t}, \ell_{t+2}^{t}, \ell_{t+3}^{t}\right)=\left(\eta^{t-1} \bar{\ell}_{1}, \eta^{t-1} \bar{\ell}_{2}, \eta^{t-1} \bar{\ell}_{3}, \eta^{t-1} \bar{\ell}_{4}\right), t=2,3, \ldots$ Choose η and $\tilde{\eta}, \eta>\tilde{\eta}$, and calculate the equilibrium, truncating at $T=40$. What are the predictions of the model that you can compare the data for an economy that has experienced a slowdown in population growth?
3. Consider an economy in which there are two dates, $t=0,1$, no uncertainty at $t=0$, and uncertainty over three possible states at $t=1$. There are two consumers, $i=1,2$, with utility functions

$$
\pi_{1} \log c_{1}^{i}+\pi_{2} \log c_{2}^{i}+\pi_{3} \log c_{3}^{i}
$$

and endowments $\left(w_{1}^{i}, w_{2}^{i}, w_{3}^{i}\right)$. Here $\pi_{j}>0$ is the probability of event j, c_{j}^{i} is the consumption of the single good at event j by consumer i, and w_{j}^{i} is the endowment of this good. The consumers have no endowment of goods nor utility for consumption at $t=0$.
a) Define an Arrow-Debreu equilibrium for this economy.
b) Define a Pareto efficient allocation for this economy.
c) Prove that any equilibrium allocation is Pareto efficient.
d) Suppose that $\pi_{1}=\pi_{2}=\pi_{3}=1 / 3,\left(w_{1}^{1}, w_{2}^{1}, w_{3}^{1}\right)=(2,1,1)$, and $\left(w_{1}^{1}, w_{2}^{1}, w_{3}^{1}\right)=(1,2,1)$. Calculate the Arrow-Debreu equilibrium of this economy.
4. Consider an economy in which consumers live forever. In every period, $t=0,1, \ldots$, one of two random events occurs, $\eta_{t}=1$ or $\eta_{t}=2$. At $t=0$, the initial state is η_{0} and a stationary Markov process given by a 2×2 matrix with elements $\pi_{i j}=\operatorname{prob}\left(\eta_{t+1}=j \mid \eta_{t}=i\right)$ governs the probability of future states. Let $\pi(s)$ be the induced probability distribution over states. Suppose that there are two consumers, $i=1,2$, each of whom has the utility function

$$
\sum_{s \in S} \beta^{t(s)} \pi(s) u_{i}\left(c_{s}^{i}\right)
$$

Here S is the set of all states, $0<\beta<1, t(s)$ is the date that state s occurs in, and c_{s}^{i} is the consumption of the single good in that state by consumer i. Suppose that endowments depend only on the latest event, $w_{s}^{i}=w^{i}\left(\eta_{s}\right)$. There is no production.
a) Define an Arrow-Debreu equilibrium for this economy.
b) Define a Pareto efficient allocation for this economy. Assuming that u_{i} is monotonically increasing, prove that an equilibrium allocation is Pareto efficient.
c) Define a sequential markets equilibrium for this economy. Carefully state and prove two propositions that relate Arrow-Debreu equilibria to sequential market equilibria. Make explicit any assumptions that you make on utility functions, endowments, and so on.
d) Translate your definitions of Arrow-Debreu equilibria and sequential market equilibria to the sort of "double sum" notation used by Stokey, Lucas, and Prescott.
e) Suppose that $u_{i}(c)=\log c, w^{1}(1)=w^{2}(2)=9$, and $w^{1}(2)=w^{2}(1)=1$. Suppose too that $\pi_{12}=\pi_{21}=\pi, 0<\pi<1$. Calculate the Arrow-Debreu equilibrium and the sequential markets equilibrium.
5. Consider the optimal growth problem

$$
\begin{array}{ll}
\max & \sum_{t=0}^{\infty}(0.6)^{t} \log c_{t} \\
\text { s.t. } & c_{t}+k_{t+1} \leq 20 k_{t}^{0.3} \\
& c_{t}, k_{t} \geq 0 \\
& k_{0}=\bar{k}_{0} .
\end{array}
$$

a) Write down the Euler conditions and the transversality condition for this problem. Calculate the steady state values of c and k.
b) Write down the functional equation that defines the value function for this problem. Guess that the value function has the form $a_{0}+a_{1} \log k$. Calculate the value function and the policy function. Verify that the policy function generates a path for capital that satisfies the Euler conditions and transversality condition in part a.
c) Let capital take values for the discrete grid $(2,4,6,8,10)$. Make the initial guess $V_{0}(k)=0$ for all k, and perform the first three steps of the value function iteration

$$
V_{i+1}(k)=\max \log \left(20 k^{0.3}-k^{\prime}\right)+(0.6) V_{i}\left(k^{\prime}\right) .
$$

d) Perform the value function iterations until

$$
\max _{k}\left|V_{i+1}(k)-V_{i}(k)\right|<10^{-5} .
$$

Report the value function and the policy function that you obtain. Compare these results with what you obtained in part b. (Hint: you probably want to use a computer.)
e) Repeat part d for the grid of capital stocks ($0.05,0.10, \ldots, 9.95,10.00$). Compare your answer with those of parts b and d. (Hint: you need to use a computer).
f) Repeat part e for the problem

$$
\begin{array}{cc}
\max & \sum_{t=0}^{\infty}(0.6)^{t} \log c_{t} \\
\text { s.t. } \quad c_{t}+k_{t+1}-0.5 k_{t} \leq 20 k_{t}^{0.3} \\
c_{t}, k_{t} \geq 0 \\
k_{0}=\bar{k}_{0} .
\end{array}
$$

(Here there is now no comparison with an analytical answer to be made.)
6. Consider the dynamic programming problem whose value function satisfies the functional equation.

$$
\begin{gathered}
V(k, \theta)=\max \quad \log c+(0.6) E\left(V\left(k^{\prime}, \theta^{\prime}\right)\right) \\
\text { s.t. } \quad c+k^{\prime} \leq \theta k^{0.3} \\
c, k^{\prime} \geq 0
\end{gathered}
$$

Here θ is a random variable that takes on the values $\theta_{1}=24$ and $\theta_{2}=16$ as governed by the first order, stationary Markov process given by the matrix

$$
\left[\begin{array}{ll}
\pi_{11} & \pi_{12} \\
\pi_{21} & \pi_{22}
\end{array}\right]=\left[\begin{array}{ll}
0.8 & 0.2 \\
0.3 & 0.7
\end{array}\right] .
$$

a) Solve this dynamic programming problem analytically.
b) Describe an economic environment for which the solution in part a is an equilibrium allocation. Define the equilibrium. Calculate the equilibrium.
c) Let capital take values for the discrete grid (2, 4, 6, 8, 10) . Make the original guess $V_{0}(k, \theta)=0$ for all k and θ, and perform the first three steps of the value function iteration

$$
V_{i+1}(k, \theta)=\max \log \left(\theta k^{0.3}-k^{\prime}\right)+(0.6) E\left(V_{i}\left(k^{\prime}, \theta^{\prime}\right)\right) .
$$

d) Perform the value function iterations until

$$
\max _{k, \theta}\left|V_{i+1}(k, \theta)-V_{i}(k, \theta)\right|<10^{-5} .
$$

Report the value function and the policy function that you obtain. Compare these results with what you obtained in part b. (Hint: you probably want to use a computer.)
e) Repeat part d for the grid of capital stocks ($0.05,0.10, \ldots, 9.95,10.00$). Compare your answer with those of parts a and d. (Hint: you need to use a computer).
f) Repeat part e for the problem

$$
\begin{gathered}
V(k, \theta)=\max \log c+(0.6) E\left(V\left(k^{\prime}, \theta^{\prime}\right)\right) \\
\text { s.t. } \quad c+k^{\prime}-0.5 k \leq \theta k^{0.3} \\
c, k^{\prime} \geq 0
\end{gathered}
$$

