## **EXAMINATION**

Please answer **two** of the three questions:

1. Consider an economy in which the consumption space is the set of functions  $c: R_+ \times R_+ \to R_+$ . In c(x,t) the index x denotes the type of good and the index t denotes the date at which it is consumed. An individual consumer has preferences given by the functional

$$u(c) = \int_0^\infty e^{-\rho t} \left[ \int_0^\infty \log(c(x,t) + 1) dx \right] dt.$$

Goods are produced using a single factor of production, labor:

$$y(x,t) = \ell(x,t)/a(x,t).$$

Each consumer has an endowment of labor equal to 1, and the total number of consumers is fixed at  $\bar{\ell}$ . The unit labor requirement a(x,t) is bounded from below,  $a(x,t) > \bar{a}(x)$ , where

$$\overline{a}(x) = e^{-x}$$
.

At t = 0 there is a z(0) > 0 such that  $a(x,0) = e^{-x}$  for all x < z(0) and that  $a(x,0) = e^{x-2z(0)}$  for all  $x \ge z(0)$ . There is learning by doing of the form

$$\frac{\dot{a}(x,t)}{a(x,t)} = \begin{cases} -\int_0^\infty b(v,t)\ell(v,t)dv & \text{if } a(x,t) > \overline{a}(x) \\ 0 & \text{if } a(x,t) = \overline{a}(x) \end{cases}.$$

Here  $\dot{a}(x,t)$  denotes the partial derivative of a(x,t) with respect to t and b(v,t) = b > 0 if a(v,t) > a(v) and b(v,t) = 0 if a(v,t) = a(v). There is no storage.

- a) Provide a motivation for the both the utility function and the production technology described above.
- b) Define an equilibrium for this economy. Characterize the equilibrium as much as possible.
- c) Consider now a two-country world in which the two countries are identical except in their endowments of labor and their initial technology levels. In particular,  $z^1(0) > z^2(0)$ . There is no borrowing or lending across countries. Define an equilibrium for this economy.

- d) Suppose that  $z^1(t) > z^2(t)$ . Explain carefully and illustrate two of the five qualitatively different possible equilibrium configurations for production, consumption, and trade at time t. (To make things easy, assume that  $z^1(t)$  and  $z^2(t)$  are sufficiently large so that good x = 0 is not produced in equilibrium.)
- e) Briefly describe the dynamics of this model, explaining the crucial role played by the sizes of the two countries,  $\overline{\ell}^1$  and  $\overline{\ell}^2$ .
- 2. Consider a two-sector growth model in which the representative consumer has the utility function

$$\sum_{t=0}^{\infty} \beta^{t} \log(a_{1}c_{1t}^{b} + a_{2}c_{2t}^{b})^{1/b}.$$

The investment good is produced according to

$$k_{t+1} = d(a_1 x_{1t}^b + a_2 x_{2t}^b)^{1/b}.$$

Feasible consumption/investment plans satisfy the feasibility constraints

$$c_{1t} + x_{1t} = \phi_1(k_{1t}, \ell_{1t}) = k_{1t}$$
  

$$c_{2t} + x_{2t} = \phi_2(k_{2t}, \ell_{2t}) = \ell_{2t}.$$

where

$$k_{1t} + k_{2t} = k_t$$
  
 $\ell_{1t} + \ell_{2t} = \ell_t$ .

The initial value of  $k_t$  is  $\overline{k_0}$ .  $\ell_t$  is normalized to 1.

- a) Define an equilibrium for this economy.
- b) Explain how you can reduce the equilibrium conditions of part a to two difference equations in  $k_t$  and  $c_t$  and a transversality condition. Here  $c_t = d(a_1c_{1t}^b + a_2c_{2t}^b)^{1/b}$  is aggregate consumption. (You do not need to go through all of the algebra, but you need to explain all of the logical steps carefully.)
- c) Suppose now that there is a world made up of two different countries, each with the same technologies and preferences, but with different constant populations,  $L_t^j = \overline{L}^j$ , and

with different initial capital-labor ratios  $\overline{k_0}^i$ . Suppose that goods 1 and 2 can be freely traded across countries, but that the investment good cannot be traded. Suppose too that there is no international borrowing. Define an equilibrium for the world economy.

- d) State and prove versions of the factor price equalization theorem, the Stolper-Samuelson theorem, the Rybczynski theorem, and the Heckscher-Ohlin theorem for this particular world economy.
- e) Let  $s_t = c_t / y_t$  where  $y_t = p_{1t}k_{1t} + p_{2t} = r_tk_t + w_t = d(a_1k_t^b + a_2)^{1/b}$  is income per capita. Transform the two difference equation in part b into two difference equations in  $k_t$  and  $s_t$ . Prove that

$$\frac{y_t^i - y_t}{y_t} = \frac{s_t}{s_{t-1}} \left( \frac{y_{t-1}^i - y_{t-1}}{y_{t-1}} \right) = \frac{s_t}{s_0} \left( \frac{y_0^i - y_0}{y_0} \right).$$

where  $y_t^i = p_{1t}k_t^i + p_{2t} = r_tk_t^i + w_t = d(a_1k_t^{ib} + a_2)^{1/b}$  is income per capita in country i. Explain the economic significance of this result.

3. Consider an economy where the consumers have Dixit-Stiglitz utility functions and solve the problem

$$\max (1-\alpha)\log c_0 + (\alpha/\rho)\log \int_0^{\mu} c(v)^{\rho} dv$$
s.t. 
$$p_0 c_0 + \int_0^{\mu} p(v)c(v) dv = w\overline{\ell} + \pi$$

$$c(v) \ge 0.$$

Here  $\pi$  are profits of the firms, which are owned by the consumers.

a) Suppose that the producer of good v takes the price function p(v) as given. Suppose too that this producer has the production function

$$y(v) = \max [z(v)(\ell(v) - f), 0].$$

Solve the consumer's profit maximization problem to derive and optimal pricing rule.

b) Suppose that there is a measure  $\mu$  of potential firms. Firm productivities are distributed on the interval  $z \ge 1$  according to the Pareto distribution with distribution function

$$F(z) = 1 - z^{-\gamma}.$$

Define an equilibrium for this economy.

- c) Suppose that  $\mu$  is large enough so that not all firms can earn nonnegative profits in equilibrium. Find an expression for the cutoff productivity level  $\overline{z}$  such that firms with productivity  $\overline{z}$  earn zero profits. Find an expression for profits  $\pi$ .
- d) Suppose now that there are two countries that engage in free trade. Each country i, i=1,2, has a population of  $\overline{\ell}_i$  and a measure of potential firms of  $\mu_i$ . Firms' productivities are again distributed according to the Pareto distribution,  $F(z)=1-z^{-\gamma}$ . A firm in country i faces a fixed cost of exporting to country j,  $j\neq i$ , of  $f_x$  where  $f_x>f_d=f$  and an iceberg transportation cost of  $\tau-1\geq 0$ . Define an equilibrium for this economy.
- e) Suppose now that the two countries in part d are symmetric in the sense that  $\overline{\ell}_1 = \overline{\ell}_2 = \overline{\ell}$  and  $\mu_1 = \mu_2 = \mu$ . Suppose too that  $\mu$  is large enough so that not all firms can earn nonnegative profits in equilibrium. Explain now why there are two relevant cutoff levels of firm productivity,  $\overline{z}_d$  and  $\overline{z}_x$ . Find expressions for these cutoff productivity levels. Find an expression for profits  $\pi$ .