CENTRO DE ESTUDIOS MONETARIOS Y FINANCIEROS MACROECONOMICS I PROBLEM SET #5

I KODLEM SEI

1. Consider the social planning problem

$$\max \sum_{t=0}^{\infty} \beta^{t} \log c_{t}$$

s.t. $c_{t} + k_{t+1} \leq \theta k_{t}^{\alpha}$
 $c_{t}, k_{t} \geq 0$
 $k_{0} \leq \overline{k}_{0}$.

- a) Write down the Euler conditions and the transversality condition for this problem.
- b) Let $v(k_t, k_{t+1})$ be the solution to

$$\max_{c_t} \log c_t$$

s.t. $c_t + k_{t+1} \le \theta k_t^{\alpha}$
 $c_t \ge 0$

for fixed k_t, k_{t+1} . What is $v(k_t, k_{t+1})$? What conditions do k_t and k_{t+1} need to satisfy to ensure $c_t, k_{t+1} \ge 0$? If we write these conditions as $k_{t+1} \in \Gamma(k_t)$, what is $\Gamma(k_t)$?

c) Write down the Euler conditions and the transversality condition for the problem

$$\max \sum_{t=0}^{\infty} \beta^{t} v(k_{t}, k_{t+1})$$

s.t. $k_{t+1} \in \Gamma(k_{t})$
 $k_{0} \leq \overline{k}_{0}$.

d) Prove that a sequence $\hat{k}_0, \hat{k}_1, \dots$ solves the conditions in part (c) if an only if there exist sequences of Lagrange multipliers $\hat{p}_0, \hat{p}_1, \dots$ and of consumption $\hat{c}_0, \hat{c}_1, \dots$ such that $(\hat{c}_0, \hat{c}_1, \dots, \hat{k}_0, \hat{k}_1, \dots, \hat{p}_0, \hat{p}_1, \dots)$ satisfy the conditions in part (a).

e) Prove that, if a sequence $\hat{k}_0, \hat{k}_1,...$ satisfies the Euler conditions and transversality condition in part c, then it solves the related planning problem. (Hint: you can adapt the general proof on pp. 98-99 of Stokey, Lucas, and Prescott to these specific functions.)

- 2. Let $v(k_t, k_{t+1})$ and $\Gamma(k_t)$ be defined as in part b of question 1.
- a) Consider the dynamic programming problem with the Bellman equation

$$V(k) = \max v(k, k') + \beta V(k')$$

s.t. $k' \in \Gamma(k)$.

Guess that V(k) has the form $a_0 + a_1 \log k$ and solve for a_0 and a_1 .

b) What is the policy function g(k) such that k' = g(k)? Verify that $k_{t+1} = g(k_t)$ satisfies the Euler equations and the transversality condition in part c of question 1.

c) Try to approximate V(k): Guess that $V_0(k) = 0$ for all *k* and use the iterative updating rule

$$V_{n+1}(k) = \max v(k,k') + \beta V_n(k')$$

s.t. $k' \in \Gamma(k)$.

Calculate the functions V_1, V_2, V_3 , and V_4 .

3. Consider the dynamic programming problem where the Bellman equation in question 2 generates a functional equation $T: B(K) \rightarrow B(K)$ of the form

$$T(V)(k) = \max v(k, k') + \beta V(k')$$

s.t. $k' \in \Gamma(k)$,

where B(K) is the set of bounded functions $V: K \to R$, $K \subset R$.

a) State Blackwell's sufficient conditions for T to be a contraction. Prove that, if T satisfies these conditions, then T is a contraction.

b) Prove that *T* satisfies Blackwell's sufficient conditions.

4. Consider an economy specified as in question 1 except that the representative consumer has the utility function

$$\sum_{t=0}^{\infty} \beta^{t} \left(\gamma \log c_{t} + (1-\gamma) \log(1-\ell_{t}) \right)$$

where ℓ_t is the supply of labor.

- a) Define a sequential markets equilibrium for this economy.
- b) Define an Arrow-Debreu equilibrium for this economy.
- c) Let $v(k_t, k_{t+1})$ be the solution to

$$\max_{c_t, \ell_t} \gamma \log c_t + (1 - \gamma) \log(1 - \ell_t)$$

s.t. $c_t + k_{t+1} \le \theta k_t^{\alpha} \ell_t^{1 - \alpha}$
 $c_t \ge 0, \ 1 \ge \ell_t \ge 0$

for fixed k_t, k_{t+1} . Explain how you could calculate $v(k_t, k_{t+1})$ on the computer. Explain how you could check that the condition $k_{t+1} \in \Gamma(k_t)$ is satisfied.