An Example of a Model with Debt Constraints

Timothy J. Kehoe 28 March 2011

Consider an economy like that in question 2 in problem set 7 where there is a continuum [0,1] of consumers of two symmetric types who live forever. Consumers have utility

$$
\sum_{t=0}^{\infty} \beta^{t} \log c_{t}^{i} .
$$

Suppose, as in the example in Kehoe and Levine (2001), that $\beta=0.5$ and that consumers of type 1 have an endowment stream of the single good in each period

$$
\left(w_{0}^{1}, w_{1}^{1}, w_{2}^{1}, w_{3}^{1}, \ldots\right)=\left(\omega^{g}, \omega^{b}, \omega^{g}, \omega^{b}, \ldots\right)=(24,9,24,9, \ldots),
$$

while consumers of type 2 have

$$
\left(w_{0}^{2}, w_{1}^{2}, w_{2}^{2}, w_{3}^{2}, \ldots\right)=\left(\omega^{b}, \omega^{g}, \omega^{b}, \omega^{g}, \ldots\right)=(9,24,9,24, \ldots) .
$$

In addition there is one unit of trees that produce $r=1$ units of the good every period. Each consumer of type i owns $\bar{\theta}_{0}^{i}$ of such trees in period $0, \bar{\theta}_{0}^{i} \geq 0, \bar{\theta}_{0}^{1}+\bar{\theta}_{0}^{2}=1$. Trees do not grow or decay.

In the sequential markets version of this model, consumers solve the problem

$$
\begin{aligned}
& \max \sum_{t=0}^{\infty} \beta^{t} \log c_{t}^{i} \\
& \text { s.t. } c_{t}^{i}+v_{t} \theta_{t+1}^{i} \leq w_{t}^{i}+\left(v_{t}+r\right) \theta_{t}^{i} \\
& \sum_{\tau=t}^{\infty} \beta^{\tau} \log c_{\tau}^{i} \geq \sum_{\tau=t}^{\infty} \beta^{\tau} \log w_{\tau}^{i} \\
& c_{t}^{i} \geq 0 \\
& \theta_{t}^{i} \geq-\Theta \\
& \theta_{0}^{i}=\bar{\theta}_{0}^{i} .
\end{aligned}
$$

An equilibrium is sequences $\hat{v}_{t}, \hat{c}_{t}^{i}, \hat{\theta}_{t}^{i}$ such that

1. Given \hat{v}_{t}, the consumers choose $\hat{c}_{t}^{i}, \hat{\theta}_{t}^{i}$ to solve their maximization problems.
2. Goods markets clear:

$$
\hat{c}_{t}^{1}+\hat{c}_{t}^{2}=w_{t}^{1}+w_{t}^{2}+r=24+9+1=34 .
$$

3. Asset markets clear:

$$
\hat{\theta}_{t}^{1}+\hat{\theta}_{t}^{2}=1
$$

A symmetric steady state is $v,\left(c^{g}, c^{b}\right),\left(\theta^{g}, \theta^{b}\right)$ such that $v_{t}=v$,

$$
c_{t}^{i}=\left\{\begin{array}{ll}
c^{g} & \text { if } w_{t}^{i}=24 \\
c^{b} & \text { if } w_{t}^{i}=9
\end{array},\right.
$$

and

$$
\theta_{t}^{i}= \begin{cases}\theta^{g} & \text { if } w_{t}^{i}=24 \\ \theta^{b} & \text { if } w_{t}^{i}=9\end{cases}
$$

satisfy the equilibrium conditions for the right choice of $\left(\bar{\theta}_{0}^{1}, \bar{\theta}_{0}^{2}\right)$.

Consider the function

$$
f^{D}\left(c^{g}\right)=\log c^{g}-\log 24+\beta\left(\log \left(34-c^{g}\right)-\log 9\right) .
$$

Let $\hat{c}=\left(w_{t}^{1}+w_{t}^{2}+r\right) / 2=17$. Notice that

$$
f^{D}\left(\omega^{g}\right)=f^{D}(24)=\log 24-\log 24+\beta(\log (34-24)-\log 9)=\beta(\log 10-\log 9)>0 .
$$

Notice too that f^{D} is concave:

$$
D^{2} f(c)=-\frac{1}{c^{2}}-\frac{\beta}{(34-c)^{2}}<0
$$

Consequently, if $f^{D}(\hat{c})<0$ as in the diagram, $f^{D}(c)$ can equal 0 only once in the interval $\left[\hat{c}, \omega^{g}\right]$.

There are two possibilities: Either

$$
f^{D}(\hat{c})=\log \hat{c}-\log 24+\beta(\log (34-\hat{c})-\log 9) \geq 0
$$

or there exists $c^{g} \in\left[\hat{c}, \omega^{g}\right]$ such that

$$
f^{D}\left(c^{g}\right)=\log c^{g}-\log 24+\beta\left(\log \left(34-c^{g}\right)-\log 9\right) .
$$

Since

$$
f^{D}(\hat{c})=\log 17-\log 24+0.5(\log 17-\log 9)<0,
$$

we look for such a c^{g}. Setting $f^{D}\left(c^{g}\right)=0$, we obtain $c^{g}=18$. We want to find values of $c^{b}, \theta^{g}, \theta^{b}$, and v such that these variables constitute a symmetric steady state.
Obviously, $c^{b}=34-18=16$.
The first order conditions for the consumer's problem are

$$
\begin{gathered}
\beta^{t} \frac{1}{c_{t}^{i}}-\lambda_{t}^{i}+\beta^{t} \frac{1}{c_{t}^{i}} \sum_{\tau=0}^{t} \mu_{t}^{i}=0 \\
-\lambda_{t}^{i} v_{t}+\lambda_{t+1}^{i}\left(v_{t+1}+r\right)=0
\end{gathered}
$$

The individual rationality constraint, if it binds at all, can bind only when $c_{t}^{i}=c^{g}$. (The consumer who receives the bad shock is always happy to receive more that his current income.) In other words, if $c_{t}^{i}=c^{b}$, then $\mu_{t}^{i}=0$. Consider a situation where $c_{t}^{i}=c^{g}$ and $c_{t+1}^{i}=c^{b}$. Then the first order conditions with respect to c_{t}^{i} and c_{t+1}^{i} are

$$
\begin{gathered}
\beta^{t} \frac{1}{c_{t}^{i}}-\lambda_{t}^{i}+\beta^{t} \frac{1}{c_{t}^{i}} \sum_{\tau=0}^{t} \mu_{t}^{i}=\beta^{t} \frac{1}{c_{t}^{i}}\left(1+\sum_{\tau=0}^{t} \mu_{t}^{i}\right)-\lambda_{t}^{i}=0 \\
\beta^{t+1} \frac{1}{c_{t+1}^{i}}-\lambda_{t+1}^{i}+\beta^{t+1} \frac{1}{c_{t+1}^{i}} \sum_{\tau=0}^{t+1} \mu_{t}^{i}=\beta^{t+1} \frac{1}{c_{t+1}^{i}}\left(1+\sum_{\tau=0}^{t} \mu_{t}^{i}\right)-\lambda_{t+1}^{i}=0 .
\end{gathered}
$$

Letting $v_{t}=v$, we can write the first order conditions for the consumer who receives the high consumption level today as

$$
\begin{gathered}
\frac{u^{\prime}\left(c^{g}\right)}{\beta u^{\prime}\left(c^{b}\right)}=\frac{c^{b}}{\beta c^{g}}=\frac{v+r}{v} \\
\frac{\frac{1}{18}}{\frac{1}{2} \frac{1}{16}}=\frac{v+1}{v}
\end{gathered}
$$

which can be solved to yield $v=9 / 7$. The budget constraint for the consumer who receives the high endowment, $w_{t}^{i}=24$, is

$$
\begin{gathered}
c^{g}+v \theta^{g}=\omega^{g}+(v+r) \theta^{b} \\
18+\frac{9}{7} \theta^{g}=24+\left(\frac{9}{7}+1\right)\left(1-\theta^{g}\right)
\end{gathered}
$$

which can be solved to yield $\theta^{g}=58 / 25=2.32$. $\theta^{b}=1-\theta^{g}=-1.32$. We can now go back and verify that all of the equilibrium conditions are satisfied for the right choice of $\bar{\theta}_{0}^{1}$ and $\bar{\theta}_{0}{ }^{2}$.

Now consider the Arrow-Debreu version of this model. The consumers solve

$$
\begin{gathered}
\max \sum_{t=0}^{\infty} \beta^{t} \log c_{t}^{i} \\
\text { s.t. } \sum_{t=0}^{\infty} p_{t} c_{t}^{i} \leq \sum_{t=0}^{\infty} p_{t}\left(w_{t}^{i}+r \bar{\theta}_{0}^{i}\right) \\
\sum_{\tau=t}^{\infty} \beta^{\tau} \log c_{\tau}^{i} \geq \sum_{\tau=t}^{\infty} \beta^{\tau} \log w_{\tau}^{i} \\
c_{t} \geq 0
\end{gathered}
$$

An equilibrium is sequences $\hat{p}_{t}, \hat{c}_{t}^{i}$ such that

1. Given \hat{p}_{t}, the consumers choose \hat{c}_{t}^{i} to solve their maximization problems.
2. Goods markets clear:

$$
\hat{c}_{t}^{1}+\hat{c}_{t}^{2}=w_{t}^{1}+w_{t}^{2}+r=24+9+1=34 .
$$

A symmetric steady state is $p,\left(c^{g}, c^{b}\right)$ such that $p_{t}=p^{t}$ and

$$
c_{t}^{i}= \begin{cases}c^{g} & \text { if } w_{t}^{i}=24 \\ c^{b} & \text { if } w_{t}^{i}=9\end{cases}
$$

satisfy the equilibrium conditions for the right choice of $\left(\bar{\theta}_{0}^{1}, \bar{\theta}_{0}^{2}\right)$.

There are a number of ways that we can find the prices $p_{t}=p^{t}$ that, together with the allocation

$$
c_{t}^{i}= \begin{cases}18 & \text { if } w_{t}^{i}=24 \\ 16 & \text { if } w_{t}^{i}=9\end{cases}
$$

constitute an Arrow-Debreu equilibrium. Consider the first order conditions

$$
\beta^{t} \frac{1}{c_{t}^{i}}-\lambda^{i} p_{t}+\beta^{t} \frac{1}{c_{t}^{i}} \sum_{t=0}^{t} \mu_{t}^{i}=0
$$

Once again we can show that, if $c_{t}^{i}=c^{b}$, then $\mu_{t}^{i}=0$. Consider a situation where $c_{t}^{i}=c^{g}$ and $c_{t+1}^{i}=c^{b}$. Then the first order conditions with respect to c_{t}^{i} and c_{t+1}^{i} are

$$
\begin{gathered}
\beta^{t} \frac{1}{c_{t}^{i}}-\lambda^{i} p_{t}+\beta^{t} \frac{1}{c_{t}^{i}} \sum_{\tau=0}^{t} \mu_{t}^{i}=\beta^{t} \frac{1}{c_{t}^{i}}\left(1+\sum_{\tau=0}^{t} \mu_{t}^{i}\right)-\lambda^{i} p_{t}=0 \\
\beta^{t+1} \frac{1}{c_{t+1}^{i}}-\lambda^{i} p_{t+1}+\beta^{t+1} \frac{1}{c_{t+1}^{i}} \sum_{\tau=0}^{t+1} \mu_{t}^{i}=\beta^{t+1} \frac{1}{c_{t+1}^{i}}\left(1+\sum_{\tau=0}^{t} \mu_{t}^{i}\right)-\lambda^{i} p_{t+1}=0 .
\end{gathered}
$$

These imply that

$$
\frac{\beta \frac{1}{c^{b}}}{\frac{1}{c^{g}}}=\frac{p_{t+1}}{p_{t}}
$$

Consequently, $p_{t}=(9 / 16)^{t}$.
Consider now a stochastic version of this economy. Let $\eta_{t} \in\{1,2\}$ be the event that occurs in period t. Assume that

$$
\operatorname{prob}\left(\eta_{t+1}=1 \mid \eta_{t}=2\right)=\operatorname{prob}\left(\eta_{t+1}=2 \mid \eta_{t}=1\right)=\pi=1 / 2 .
$$

and that

$$
w_{t}^{i}= \begin{cases}24 & \text { if } \eta_{t}=i \\ 9 & \text { if } \eta_{t} \neq i\end{cases}
$$

for $i=1,2$. Once again, there is one unit of trees that produce $r=1$ units of the good every period.

In the sequential markets version of this model, consumers solve the problem

$$
\begin{gathered}
\max \sum_{s \in S} \beta^{t(s)} \pi_{s} \log c_{s}^{i} \\
\text { s.t. } c_{s}^{i}+q_{(s, 1)} \theta_{(s, 1)}^{i}+q_{(s, 2)} \theta_{(s, 2)}^{i} \leq w_{s}^{i}+\left(v_{s}+r\right) \theta_{s}^{i} \\
\sum_{\sigma \geq s} \beta^{t(\sigma)} \pi_{\sigma} \log c_{\sigma}^{i} \geq \sum_{\sigma \geq s} \beta^{t(\sigma)} \pi_{\sigma} \log w_{\sigma}^{i} \\
c_{s} \geq 0 \\
\theta_{s}^{i} \geq-\Theta \\
\theta_{\eta_{0}}^{i}=\bar{\theta}_{0}^{i} .
\end{gathered}
$$

An equilibrium is sequences $\hat{v}_{s}, \hat{q}_{(s, 1)}, \hat{q}_{(s, 2)} \hat{c}_{s}^{i}, \hat{\theta}_{(s, 1)}^{i}, \hat{\theta}_{(s, 2)}^{i}$ such that

1. Given $\hat{v}_{s}, \hat{q}_{(s, 1)}, \hat{q}_{(s, 2)}$, the consumers choose $\hat{c}_{s}^{i}, \hat{\theta}_{(s, 1)}^{i}, \hat{\theta}_{(s, 2)}^{i}$ to solve their maximization problems.
2. Goods markets clear:

$$
\hat{c}_{s}^{1}+\hat{c}_{s}^{2}=w_{s}^{1}+w_{s}^{2}+r=24+9+1=34 .
$$

3. Asset markets clear:

$$
\hat{\theta}_{\left(s, \eta^{\prime}\right)}^{1}+\hat{\theta}_{\left(s, \eta^{\prime}\right)}^{2}=1 .
$$

A symmetric stochastic steady state is $v,\left(q_{n}, q_{r}\right)\left(c^{g}, c^{b}\right),\left(\theta^{g}, \theta^{b}\right)$ such that $v_{t}=v, q_{\left(s, \eta^{\prime}\right)}=q_{n}$ if $\eta^{\prime}=\eta_{s}$, that is, if there is no reversal, $q_{\left(s, \eta^{\prime}\right)}=q_{r}$ if $\eta^{\prime} \neq \eta_{s}$, that is, if there is a reversal,

$$
c_{s}^{i}=\left\{\begin{array}{ll}
c^{g} & \text { if } w_{s}^{i}=24 \\
c^{b} & \text { if } w_{s}^{i}=9
\end{array},\right.
$$

and

$$
\theta_{s}^{i}= \begin{cases}\theta^{g} & \text { if } w_{s}^{i}=24 \\ \theta^{b} & \text { if } w_{s}^{i}=9\end{cases}
$$

satisfy the equilibrium conditions for the right choice of $\left(\bar{\theta}_{0}^{1}, \bar{\theta}_{0}^{2}\right)$.
Let us begin by observing that, if we add together the budget constraints of the two consumer types, we obtain

$$
c_{s}^{1}+c_{s}^{2}+q_{(s, 1)}\left(\theta_{(s, 1)}^{1}+\theta_{(s, 1)}^{2}\right)+q_{(s, 2)}\left(\theta_{(s, 2)}^{1}+\theta_{(s, 2)}^{2}\right)=w_{s}^{1}+w_{s}^{2}+\left(v_{s}+r\right)\left(\theta_{s}^{1}+\theta_{s}^{2}\right) .
$$

Feasibility implies that

$$
q_{(s, 1)}+q_{(s, 2)}=v_{s} .
$$

This can be thought of as an arbitrage condition: The price that a consumer receives for selling one unit of trees in state s is v_{s}. The price that a consumer pays to receive this tree if event 1 occurs is $q_{(s, 1)}$, and the price that a consumer pays to receive this tree if no reversal occurs is $q_{(s, 2)}$. Since these two events are exhaustive and mutually exclusive, the total amount paid for the tree is $q_{(s, 1)}+q_{(s, 2)}$.

The first order conditions for the consumer's problem are

$$
\begin{gathered}
\beta^{t(s)} \pi_{s} \frac{1}{c_{s}^{i}}-\lambda_{s}^{i}+\beta^{t(s)} \pi_{s} \frac{1}{c_{s}^{i}} \sum_{\sigma \leq s} \mu_{\sigma}^{i}=0 \\
-\lambda_{s}^{i} q_{(s, \eta)}+\lambda_{(s, \eta)}^{i}\left(v_{(s, \eta)}+r\right)=0 .
\end{gathered}
$$

Once again we can show that, if $c_{\left(s, \eta^{\prime}\right)}^{i}=c^{b}$, then $\mu_{\left(s, \eta^{\prime}\right)}^{i}=0$. First, consider the case where $c_{s}^{i}=c^{g}$ and $c_{\left(s, \eta^{\prime}\right)}^{i}$ is c^{b}. The, since $\mu_{\left(s, \eta^{\prime}\right)}^{i}=0$, we can write out the first order condition for $c_{(s, \eta)}^{i}$ as

$$
\beta^{t(s)+1} \pi_{s} \pi \frac{1}{c^{b}}-\lambda_{\left(s, \eta^{\prime}\right)}^{i}+\beta^{t(s)+1} \pi_{s} \pi \frac{1}{c^{b}} \sum_{\sigma \leq s} \mu_{\sigma}^{i}=0
$$

Combining this with the first order condition for c_{s}^{i}, as in the deterministic case, we obtain

$$
\frac{u^{\prime}\left(c^{g}\right)}{\beta \pi u^{\prime}\left(c^{b}\right)}=\frac{v_{(s, \eta)}+r}{q_{(s, \eta)}} .
$$

Imposing $v_{\left(s, \eta^{\prime}\right)}=v$, this becomes

$$
q_{\left(s, \eta^{\prime}\right)}=q_{r}=\frac{\beta \pi u^{\prime}\left(c^{b}\right)}{u^{\prime}\left(c^{g}\right)}(v+r) .
$$

Here q_{r} is the price paid for an Arrow security to purchase one unit of the tree in the case of reversal - where $\eta_{s}=1$, for example, but $\eta^{\prime}=2$. Consider now the case where $c_{s}^{i}=c^{b}$ and $c_{(s, \eta)}^{i}$ is c^{b}. (We think of this as the same state s; we are just looking at the other consumer type's first order conditions.) We obtain

$$
\begin{aligned}
& \frac{u^{\prime}\left(c^{b}\right)}{\beta(1-\pi) u^{\prime}\left(c^{b}\right)}=\frac{v+r}{q_{n}} \\
& q_{n}=\beta(1-\pi)(v+1) .
\end{aligned}
$$

Here q_{n} is the price paid for an Arrow security to purchase one unit of the tree in the case of no reversal.

Consider now the function

$$
f^{D}\left(x^{g}\right)=(1-\beta(1-\pi))\left(\log c^{g}-\log 24\right)+\beta \pi\left(\log \left(34-c^{g}\right)-\log 9\right) .
$$

Setting $f^{D}\left(c^{g}\right)=0$ in the case where $\beta=0.5$ and $\pi=0.5$, we obtain $c^{g}=21.5252$.
We want to find values of $c^{b}, \theta^{g}, \theta^{b}, q_{r}, q_{n}$, and v such that these variables constitute a symmetric steady state. Obviously, $c^{b}=12.4748$.

Plugging these values into the first order conditions that we obtained above, we find that

$$
\begin{gathered}
q_{r}=\frac{\frac{1}{4} \frac{1}{12.4748}}{\frac{1}{21.5252}}(v+1)=0.4314(v+1) \\
q_{n}=0.25(v+1) .
\end{gathered}
$$

Notice that we can combine these two conditions to obtain

$$
\begin{gathered}
q_{r}+q_{n}=0.6814(v+1) \\
v=0.6814(v+1),
\end{gathered}
$$

which implies that $v=2.1385, q_{r}=1.3539, q_{n}=0.7846$. We can plug this into the budget constraint for the consumer with the high endowment,

$$
\begin{gathered}
c^{g}+q_{n} \theta^{g}+q_{r} \theta^{b}=\omega^{g}+(v+1) \theta^{g} \\
21.5252+0.7846 \theta^{g}+1.3539\left(1-\theta^{g}\right)=24+3.1385 \theta^{g},
\end{gathered}
$$

to solve for $\theta^{g}=-0.3023, \theta^{b}=1.3023$. We can now go back and verify that all of the equilibrium conditions are satisfied for the right choice of $\bar{\theta}_{0}^{1}$ and $\bar{\theta}_{0}^{2}$.

Now consider the Arrow-Debreu version of this model. The consumers solve

$$
\begin{gathered}
\max \sum_{s \in S} \beta^{t(s)} \pi_{s} \log c_{s}^{i} \\
\text { s.t. } \sum_{s \in \mathrm{~S}} p_{s} c_{s}^{i} \leq \sum_{\mathrm{s} \in \mathrm{~S}} p_{s}\left(w_{s}^{i}+r \bar{\theta}_{0}^{i}\right) \\
\sum_{\sigma \geq s} \beta^{t(\sigma)} \pi_{\sigma} \log c_{\sigma}^{i} \geq \sum_{\sigma \geq s} \beta^{t(\sigma)} \pi_{\sigma} \log w_{\sigma}^{i} \\
c_{s} \geq 0 .
\end{gathered}
$$

An equilibrium is sequences $\hat{p}_{s}, \hat{c}_{s}^{i}$, such that

1. Given \hat{p}_{s}, the consumers choose \hat{c}_{s}^{i} to solve their maximization problems.
2. Goods markets clear:

$$
\hat{c}_{s}^{1}+\hat{c}_{s}^{2}=w_{s}^{1}+w_{s}^{2}+r=24+9+1=34 .
$$

A symmetric stochastic steady state is $\left(p_{n}, p_{r}\right),\left(c^{g}, c^{b}\right)$ such that $p_{\left(s, \eta^{\prime}\right)}=p_{n} p_{s}$ if $\eta^{\prime}=\eta_{s}$, that is, if there is no reversal, $p_{\left(s, \eta^{\prime}\right)}=p_{r} p_{s}$ if $\eta^{\prime} \neq \eta_{s}$, that is, if there is a reversal and

$$
c_{s}^{i}= \begin{cases}c^{g} & \text { if } \quad w_{s}^{i}=24 \\ c^{b} & \text { if } w_{s}^{i}=9\end{cases}
$$

satisfy the equilibrium conditions for the right choice of $\left(\bar{\theta}_{0}^{1}, \bar{\theta}_{0}^{2}\right)$.
As above, the first order conditions become

$$
p_{r}=\frac{p_{(s, \eta)}}{p_{s}}=\frac{\beta \pi u^{\prime}\left(c^{b}\right)}{u^{\prime}\left(c^{g}\right)}
$$

if there is a reversal and

$$
p_{n}=\frac{p_{\left(s, \eta^{\prime}\right)}}{p_{s}}=\beta(1-\pi)
$$

if not.
Letting $p_{\eta_{0}}=1$, we can therefore construct Arrow-Debreu prices using the rule

$$
p_{(s, \eta)}=\left\{\begin{array}{ll}
\beta(1-\pi) p_{s} & \text { if } \eta^{\prime}=\eta_{s} \\
\beta \pi\left(u^{\prime}\left(c^{b}\right) / u^{\prime}\left(c^{g}\right)\right) p_{s} & \text { if } \eta^{\prime} \neq \eta_{s}
\end{array} .\right.
$$

In particular,

$$
p_{\left(s, \eta^{\prime}\right)}=\left\{\begin{array}{ll}
\frac{1}{2} \frac{1}{2} p_{s}=0.25 p_{s} & \text { if } \eta^{\prime}=\eta_{s} \\
\frac{1}{2} \frac{1}{2}\left(\frac{21.5252}{12.4748}\right) p_{s}=0.4314 p_{s} & \text { if } \eta^{\prime} \neq \eta_{s}
\end{array} .\right.
$$

