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Environment 
Three periods: 0, 1, 2 

Single, storable good 

Consumer’s endowment: 1 unit in period 0 only 

Production technology: 

 
The good can be invested in a project that pays 1R >  in 2t =  for each unit in 0t = .  The 
project can be shut down in 1t =  and the investment can be salvaged one-for-one.  A 
project that is shut down cannot be restarted.  Consumers can store the good. 

Consumer’s utility:  1 2( , , )v c c θ , where θ  takes on the value 1 or 2 in period 1 

1 2 1( , ,1) ( )v c c u c=  

1 2 1 2( , , 2) ( )v c c u c cβ= +  

Let 
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1

cu c
σ

σ

− −
=

−
.  Notice that, by l’Hôpital’s rule, 
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parameter σ , 0σ ≥ , is called the (Arrow-Pratt) coefficient of relative risk aversion.  In 
general, it is defined as 
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Notice that, with the utility function 
1 1( )
1

cu c
σ

σ

− −
=

−
, ( )cσ  is just the constant σ . 

Individual savings 

Suppose that with probabilityλ , 0 1λ< < , the consumer has the liquidity shock 1θ = .  
The consumer invests 1 in the project in 0t = .  He/she then learns θ  in 1t = .  If  1θ = , 
the consumer salvages 1 of his/her investment and eats it, 1

1 1c = .  If 2θ = , however, the 
consumer can consume 2

1c  in 1t =  and 2
2c  in 2t = .  The optimal choice of 2

1c  and 2
2c  is 

the solution to  
2 2
1 2max  ( )u c cβ +  

2 2
2 1s.t. (1 )c R c= −  
2 2
1 2, 0c c ≥ . 

The Lagrangian is  

( )2 2 2 2 2 2
1 2 1 2 1 2( , , )  ( ) (1 ) (1 )L c c u c c R c cμ β μ λ= + + − − − . 

There are two ways to see that in the optimal choice is to set 2
1 0c = : 

The first is to write out the first order conditions allowing for corner solutions where 
2 0tc =  

2 2
2 21 2
1 22

1

( , , ) '( ) 0L c c u c c R
c

μ β μ∂
= + − ≤

∂
, 0=  if 2

1 0c >  

2 2
2 21 2
1 22

2

( , , ) '( ) 0L c c u c c
c

μ β μ∂
= + − ≤

∂
, 0=  if 2

2 0c > . 

These conditions say that the derivative needs to be equal to zero if we are at an interior 
solution, where 2 0tc > , but allow the possibility of a corner solution where 2 0tc = . 
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Example of interior solution 2 0tc > : 

 
Example of corner solution 2 0tc = : 

 
A second way to see this is to realize that the patient depositor is indifferent between 
receiving consumption in period 1 and consumption in period 2.  The constraint that the 
consumption plan be feasible,  

2 2
2 1(1 )c R c= −  

however, implies that consuming ε  more in period 1 means consuming Rε  less, Rε ε>  
in period 2.  Therefore, we should set 2

1c  as low as possible, 0. 
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Of course, this is just what the first order conditions say:  The marginal benefits of 2
1c  

and 2
2c  are the same, 2 2

1 2'( )u c cβ + .  The marginal cost of 2
1c , however, is Rμ , which is 

larger than the marginal cost of 2
2c , μ .  We therefore set 2

1 0c =  and let  

2 2
2 21 2
1 22

1

( , , ) '( ) 0L c c u c c R
c

μ β μ∂
= + − <

∂
 

and set 2
1c R= .  Consequently, the expected value of utility of a consumer who invests on 

his own is  
1 2 2
1 1 2( ) (1 ) ( ) (1) (1 ) ( )u c u c c u u Rλ λ β λ λ β+ − + = + − . 

Notice that we could also introduce 1
2c , the consumption in 2t =  of the consumer who 

receives the liquidity shock 1θ =  and argue that it is optimal to set 1
2 0c = , but, since the 

consumer does not value this consumption at all, this is obvious. 

Optimal deposit contract 

Suppose that a fixed fraction λ  of consumers have the liquidity shock 1θ = .  Suppose 
too, for the moment, that the value of θ  for each consumer is public information.  Later, 
we examine the more interesting case where the value of θ  is private information. 

Let tcθ  be the withdrawal of the consumer in period t  who has liquidity shock θ .  We 
argue that by pooling risk in a bank, the consumers can achieve higher utility than they 
can with individual savings, (1) (1 ) ( )u u Rλ λ β+ − . 

The optimal contract that banks offer depositors solves 
1 2 2
1 1 2max  ( ) (1 ) ( )u c u c cλ λ β+ − +  

2 1 2
2 1 1s.t. (1 ) 1 ( (1 ) )c R c cλ λ λ⎡ ⎤− = − + −⎣ ⎦  

1 2 2
1 1 2, , 0c c c ≥  

Here 1 2 2
1 1 2( ) (1 ) ( )u c u c cλ λ β+ − +  is the expected utility of the contract for a depositor: 

λ  is the probability that 1θ =  and 1
1( )u c  is the utility when 1θ = . 

(1 )λ−  is the probability that 2θ =  and 2 2
1 2( )u c cβ +  is the utility when 2θ = . 

Here too 2 1 2
2 1 1(1 ) 1 ( (1 ) )c R c cλ λ λ⎡ ⎤− = − + −⎣ ⎦  is the restriction that the contract be feasible: 

1 2
1 1(1 )c cλ λ+ −  are the withdrawals in 1t = . 

1 2
1 11 ( (1 ) )c cλ λ− + −  are the deposits not withdrawn in  1t = .   

2
2(1 )cλ−  are the withdrawals in 2t = .  They are equal to the gross returns on deposits not 

with drawn in 1t = , 1 2
1 11 ( (1 ) )R c cλ λ⎡ ⎤− + −⎣ ⎦  



5 

The Lagrangian is  

( )1 2 2 1 2 2 1 2 2
1 1 2 1 1 2 1 1 2( , , , )  ( ) (1 ) ( ) 1 ( (1 ) ) (1 )L c c c u c u c c R c c cμ λ λ β μ λ λ λ⎡ ⎤= + − + + − + − − −⎣ ⎦ , 

where μ  is the Lagrange multiplier. 

The first order conditions, again allowing for corner solutions, are 
1 2 2

11 1 2
11

1

( , , , ) '( ) 0L c c c u c R
c

μ λ μλ∂
= − ≤

∂
, 0=  if 1

1 0c >  

1 2 2
2 21 1 2
1 22

1

( , , , )  (1 ) '( ) (1 ) 0L c c c u c c R
c

μ λ β μ λ∂
= − + − − ≤

∂
, 0=  if 2

1 0c >  

1 2 2
2 21 1 2
1 22

2

( , , , )  (1 ) '( ) (1 ) 0L c c c u c c
c

μ λ β μ λ∂
= − + − − ≤

∂
, 0=  if 2

2 0c > . 

Once again, it is optimal to set 2
1 0c =  because increasing 2

1c   provides the same marginal 
increase in expected utility as does increasing 2

2c , 2 2
1 2(1 ) '( )u c cλ β− + , but it has a large 

marginal cost, (1 )Rμ λ− , compared to (1 )μ λ− . 

To find the optimal deposit contract, we solve 
1 2 2

11 1 2
11

1

( , , , ) '( ) 0L c c c u c R
c

μ λ μλ∂
= − =

∂
 

1 2 2
21 1 2
22

2

( , , , ) (1 ) '( ) (1 ) 0L c c c u c
c

μ λ β μ λ∂
= − − − =

∂
 

2 1
2 1(1 ) (1 )c R cλ λ− = − . 

We rewrite the first two conditions as 
1
1'( )u c Rμ=  

2
2'( )u cβ μ= . 

Dividing the first condition by the second, we obtain 
1
1
2
2

'( )
'( )

u c R
u c

β= . 

With our choice of utility function 
1 1( )
1

cu c
σ

σ

− −
=

−
, this can be rewritten as 

1
1
2
2

( )
( )
c R
c

σ

σ β
−

− =  

2 1
2 1( ) ( )c R cσ σβ=  
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1
2 1
2 1( )c R cσβ= . 

Plugging this into the restriction that the contract be feasible,  
2 1
2 1(1 ) (1 )c R cλ λ− = − , 

we can solve for the optimal deposit contract: 

( )
1

1 1
1 1(1 )( ) 1R c R cσλ β λ− = −  

1
1 1
1 1(1 )( )R c R Rcσλ β λ− = −  

1
1 1
1 1(1 )( )R c Rc Rσλ β λ− + =  

1
1 1

(1 )( )

Rc
R Rσλ β λ

=
− +

, 

which implies that  
1

2
2 1

( )

(1 )( )

R Rc
R R

σ

σ

β

λ β λ
=

− +
. 

Proposition.  Suppose that 1/ 1R β> >  and that 1σ ≥ .  Then  
1 2
1 21 c c R< < < . 

Proof.  1/R β>  implies that 1Rβ > .  Since 
1

2 1
2 1( )c R cσβ=  and 1 0σ > > , this implies 

that 2 1
2 1c c> . 

To see that 1
1 1c > , notice that  

11
1R σ

−
≥  

if 1σ ≥ .  This implies that 
1

R Rσ≥ . 

Since 1β < , 
1

1 σβ> , which implies 
1

( )R R σβ>  
1

(1 ) (1 )( )R R σλ λ β− > −  
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1

(1 )( )R R Rσλ β λ> − +  

1 1
(1 )( )

R

R Rσλ β λ
>

− +
 

1
1 1c > . 

Plugging this into the restriction that the contract be feasible, we see that 
2 1
2 1(1 ) (1 ) (1 )c R c Rλ λ λ− = − < −  

2
2c R< . 

We now have the complete characterization of the optimal contract: 
1 2
1 21 c c R< < < , 

which concludes the proof. 

Let 1
1 1r c=  be the gross return on deposits withdrawn in 1t =  and 2

2 2r c=  be the gross 
return on deposits withdrawn in 2t = .  Notice that  

1 21 r r R< < < . 

Notice too for 1 21 r r R< < < , all we require is that 
1

( )R R σβ> .  This is true whenever 
1σ ≥ , but, depending on R  and β , can even be true if 1σ < .   

The higher σ , the more risk averse are depositors, the more the depositors are willing to 
give up a high return 2r  in 2t =  to get a return 1r  in 1t = . 

We can represent the optimal deposit contract diagrammatically: 

 
Bank runs 

A problem with the contract arises if the type of a depositor in 1t =  is not verifiable, that 
is, it is private information. 

0t =  1t =  2t =  

1
1 1c r=  

1−  

2
2 2c r=  
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Suppose now that, in 1t = , that a patient depositor predicts that other patient depositors 
will withdraw their deposits.  What should he or she do? 

If all depositors try to withdraw, there are not enough funds to pay off their withdrawals 
because  

1 1r > . 

If 11/ 1f r= <  of depositors withdraw in 1t = , then the bank will fail and have nothing to 
pay depositors who try to withdraw in 2t = .  Notice that with the utility functions 

( ) logu c c=  consumers will receive utility −∞  if they withdraw 0.  This is also true for 

the utility function 
1 1( )
1

cu c
σ

σ

− −
=

−
 where 1σ > . 

There are several ways to model this.  Here are two: 

All withdrawers treated equally 

The bank realizes that there is a run as soon as it starts.  If 11/f r≥  depositors try to 
withdraw at 1t = , then the bank pays out all its deposits to withdrawers.  Once all of 
these deposits are paid out, no other depositor receives anything.  Each withdrawer 
receives 

1
1 r
f
≤ . 

In period 1t =  all depositors who receive the liquidity shock 1θ =  try to with draw.  It is 
the consumers who receive 2θ =  in whom we are interested.  Each consumer of this type 
can choose on of two actions:  W  to try to withdraw, that is to run on the bank, or N  to 
not try to withdraw. 

Let 1( , )V a a−  be the payoff to a consumers who chooses action { , }a W N∈  when all other 
consumers choose action 1a− .  We assume the each consumer is a very small part of the 
total population, so that aggregate outcomes depend only on 1a− . 

For an optimal deposit contract to be susceptible to a bank run, we require that 

( , ) ( , )V W W V N W> , 

which says that a depositor prefers to with draw if other depositors with 2θ =  withdraw, 
and that 

( , ) ( , )V N N V W N> , 

which says that a depositor does not withdraw if other depositors with 2θ =  do not 
withdraw. 

Suppose that all other depositors with 2θ =  try to withdraw, that is, 1f = .  Then, for an 
individual depositors with 2θ = , 

( , ) (1) (0) ( , )V W W u u V N Wβ β= > = . 
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Suppose, however, that all other depositors with 2θ =  do not withdraw.  Then, for an 
individual depositors with 2θ = , 

2 1( , ) ( ) ( ) ( , )V N N u r u r V W Nβ β= > = .   

The question is whether consumers will want to deposit in 0t = t=0 knowing that there 
can be a bank run.  We have seen that, on their own, consumers can obtain utility 

(1) (1 ) ( )u u Rλ λ β+ − .  Suppose that what touches off a bank run is the realization of a 
sunspot variable ζ  that takes on two values: 

prob( 1)ζ π= =  

prob( 0) 1ζ π= = − . 

Depositors run on the bank if 1ζ =  but not if 0ζ = .  The expected utility of depositing 
in the bank is 

[ ] [ ]1 2(1 ) ( ) (1 ) ( ) (1) (1 ) (1)u r u r u uπ λ λ β π λ λ β− + − + + − . 

The utility of not depositing in the bank is  

(1) (1 ) ( )u u Rλ λ β+ − . 

Since the optimal deposit contract ensures that 

1 2( ) (1 ) ( ) (1) (1 ) ( )u r u r u u Rλ λ β λ λ β+ − > + − , 

we know that  

[ ] [ ]1 2(1 ) ( ) (1 ) ( ) (1) (1 ) (1) (1) (1 ) ( )u r u r u u u u Rπ λ λ β π λ λ β λ λ β− + − + + − > + −  

for 0π >  small enough. 

Notice, however, that, since 

(1) (1 ) (1) (1) (1 ) ( )u u u u Rλ λ β λ λ β+ − < + − , 

if π  is close to 1, then 

[ ] [ ]1 2(1 ) ( ) (1 ) ( ) (1) (1 ) (1) (1) (1 ) ( )u r u r u u u u Rπ λ λ β π λ λ β λ λ β− + − + + − < + − , 

and no one will want to deposit money in the bank. 

A sunspot equilibrium with bank runs is an optimal deposit contract, 1
1 1c r= , 2

2 2c r= , 
1 2
2 2 0c c= = , and a probability 0π >  that satisfy  

( , ) ( , )V W W V N W>  

( , ) ( , )V N N V W N>  

(1 ) ( , ) ( , ) (0)V N N V W W Vπ π− + >  

where (0) (1) (1 ) ( )V u u Rλ λ β= + −  is the expected utility of not depositing anything in 
the bank.   
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We have shown that there is a sunspot equilibrium for all 0π >  sufficiently small.  Since 
we can vary π , as long as it remains sufficiently small, and still have an equilibrium, 
there is a continuum of sunspot equilibria. 

Sequential service constraint 
Let us impose what Neil Wallace refers to as a sequential service constraint.  For the first 
f λ>  withdrawers, the bank pays 1r .  Afterwards it pays a fixed amount δ , 0 1δ< <  in 

1t =  and Rδ  in 2t = .  Here δ  is the minimum reserve requirement as a fraction of 
deposits. 

Let us calculate how many depositors f  can withdraw in 1t =  before the bank hits the 
minimum reserve requirement δ :    

11 (1 )fr f δ− = − . 

Here 11 fr−  is the amount of deposits left in the bank after the fraction f  of depositors 
withdraw 1r . 

1( ) 1f r δ δ− = −  

1

1f
r

δ
δ

−
=

−
. 

Notice that 1f < .  During a bank run a fraction f  of withdrawers receive 1r .  In the 
remaining fraction 1 f− , the fraction (1 )fλ −  who have the liquidity shock 1θ =  
receives δ  in 1t =  and the fraction (1 )(1 )fλ− −  who have the shock 2θ =  receives Rδ  
in 2t = .   

Suppose that all depositors run.  The expected utility of a depositor with 2θ =  who tries 
to withdraw is 

1( ) (1 ) ( )f u r f u Rβ β δ+ − . 

The utility of a depositor with 2θ =  who does not try to withdraw is 

( )u Rβ δ . 

If 1r Rδ> , then  

1( , ) ( ) (1 ) ( ) ( ) ( , )V W W f u r f u R u R V N Wβ β δ β δ= + − > = , 

and all depositors with 2θ =  prefer to run on the bank.  Notice that  

2 1( , ) ( ) ( ) ( , )V N N u r u r V W Nβ β= > = , 

which implies that patient depositors do not try to withdraw unless others do. 

Again, we can model a sunspot such that 1ζ =  with probability π .  The expressions now 
are more complicated.  Then expected value of depositing in the bank is  
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[ ] ( ) ( )1 2 1 1

(1 ) ( , ) (1 ) ( , )

  (1 ) ( ) (1 ) ( ) ( ) (1 ) ( ) (1 ) ( ) (1 ) ( )

V N N V W W

u r u r fu r f u fu r f u R

π λ

π λ λ β π λ δ λ β δ

− + − =

− + − + + − + − + −⎡ ⎤⎣ ⎦
Once again, for 0π >  small enough, this expression is great than the utility of not 
depositing in the bank, 

(1) (1 ) ( )u u Rλ λ β+ − , 

and consumers want to deposit in the bank. 

Why we need positive reserves 

Notice that, if we set 0δ = , then no one will want to deposit in the bank at 0t =  if 1σ ≥ .  
The problem is that, when 1σ ≥ , ( ) (0)u uδ = = −∞ .  Consequently, 

[ ] ( ) ( )1 2 1 1

(1 ) ( , ) (1 ) ( , )

  (1 ) ( ) (1 ) ( ) ( ) (1 ) (0) (1 ) ( ) (1 ) (0)

V N N V W W

u r u r fu r f u fu r f u

π λ

π λ λ β π λ λ β

− + − =

− + − + + − + − + − = −∞⎡ ⎤⎣ ⎦
As long as a bank run occurs with a positive probability π , no matter how small, and the 
consumer has utility −∞  when this happens, the consumer will no take the risk of 
depositing in the bank. 

Stopping bank runs  
The government can intervene in a number of ways to stop a bank run.  It can guarantee 
deposits.  Alternatively, it can serve as lender of last resort.  Suppose that payoffs are 
such that 

( , ) ( , )V N W V W W> , 

that is, such that a depositor with 2θ =  does not want to withdraw in 1t =  even if all 
other depositors are withdrawing.  Then there cannot be a bank run in equilibrium.  Any 
government policy that ensures that this condition holds stops bank runs.  One policy that 
the bank can enact on its own to prevent bank runs is a partial suspension of payments. 

Suppose that the bank sets the minimum reserves δ  so that  

1R rδ >  

1r
R

δ > . 

Then no depositor with 2θ =  wants to withdraw in 1t = .  Since 1r R< , we can set 1δ < .  
Depositors with 2θ =  do not run on the bank because they know that the bank will keep 
enough deposits invested in the projects that pay R  in period 2t =  so that they would 
receive more in 2t = , Rδ , than they would even if they were at the front of the line 
during the bank run in 1t = , 1r . 


