HECKSCHER-OHLIN MODEL

Fixed Proportions Model

Production technology:

$$y_1 = \min[k_1, \ell_1/2] = k_1 = \ell_1/2$$

$$y_2 = \min[k_2/2, \ell_2] = k_2/2 = \ell_2.$$

Endowments:

 $\overline{k} = 16, \ \overline{\ell} = 14.$

Utility of the representative consumer/worker:

$$u(c_1, c_2) = \log c_1 + \log c_2$$
.

Production Possibility Set

$k_1 + k_2 \le k$	$\ell_1 + \ell_2 \leq \ell$
$y_1 + 2y_2 \le 16$	$2y_1 + y_2 \le 14$

An **autarky equilibrium** is a set of goods prices \hat{p}_1 , \hat{p}_2 , factor prices \hat{r}, \hat{w} , a consumption plan \hat{c}_1, \hat{c}_2 , and production plans $\hat{y}_1, \hat{y}_2, \hat{k}_1, \hat{k}_2, \hat{\ell}_1, \hat{\ell}_2$ such that

• Given \hat{p}_1 , \hat{p}_2 , \hat{r} , \hat{w} , the consumer chooses \hat{c}_1 , \hat{c}_2 to solve

max log
$$c_1 + \log c_2$$

s. t. $\hat{p}_1 c_1 + \hat{p}_2 c_2 = \hat{r} \overline{k} + \hat{w} \overline{\ell}$

- $\hat{p}_1 \hat{r} 2\hat{w} \le 0$, = 0 if $\hat{y}_1 > 0$, $\hat{p}_2 - 2\hat{r} - \hat{w} \le 0$, = 0 if $\hat{y}_2 > 0$.
- $\hat{c}_1 = \hat{y}_1,$ $\hat{c}_2 = \hat{y}_2.$
- $\hat{y}_1 = \min[\hat{k}_1, \hat{\ell}_1/2],$ $\hat{y}_2 = \min[\hat{k}_2/2, \hat{\ell}_2].$
- $\hat{k}_1 + \hat{k}_2 \leq \overline{k}$, $\hat{\ell}_1 + \hat{\ell}_2 \leq \overline{\ell}$.

Solving the consumer's problem, we obtain

$$\hat{c}_1 = \frac{\hat{r}\overline{k} + \hat{w}\overline{\ell}}{2\hat{p}_1}, \ \hat{c}_2 = \frac{\hat{r}\overline{k} + \hat{w}\overline{\ell}}{2\hat{p}_2},$$

which imply

$$\frac{\hat{c}_2}{\hat{c}_1} = \frac{\hat{p}_1}{\hat{p}_2}$$

Guess that $\hat{c}_1 = \hat{y}_1 = 4$, $\hat{c}_2 = \hat{y}_2 = 6$. This implies that

$$\frac{\hat{p}_1}{\hat{p}_2} = \frac{6}{4} = \frac{3}{2}.$$

Set $\hat{w} = 1$ (numeraire). We can use the zero profit conditions to solve for \hat{p}_2 , \hat{w} , \hat{r} :

$$\begin{aligned} \hat{p}_1 - \hat{r} - 2 &= 0, \\ \hat{p}_2 - 2\hat{r} - 1 &= 0 \iff \frac{2}{3}\hat{p}_1 - 2r - 1 &= 0 \end{aligned}$$

We can solve to obtain $\hat{p}_1 = 9/4 = 2.2500$, $\hat{p}_2 = 6/4 = 1.5000$, $\hat{r} = 1/4 = 0.2500$.

Autarky Equilibrium

	${\hat p}_j$	\hat{c}_{j}	\hat{y}_{j}	\hat{k}_{j}	$\hat{\ell}_{j}$	ŕ	ŵ
good 1	9/4	4	4	4	8	1/4	1
good 2	6/4	6	6	12	6		

$$u(\hat{c}_1, \hat{c}_2) = \log 4 + \log 6 = 3.1781$$

Real income index $e^{1/2(u(\hat{c}_1,\hat{c}_2))} = \hat{c}_1^{1/2}\hat{c}_2^{1/2} = 4^{1/2}6^{1/2} = 4.8990$.

Trade Equilibrium for a Small Open Economy

Terms of trade $\frac{\hat{p}_1}{\hat{p}_2}$ are determined in the rest of the world.

A trade equilibrium is a set of

goods prices \hat{p}_1 , \hat{p}_2 , factor prices \hat{r}, \hat{w} , a consumption plan \hat{c}_1, \hat{c}_2 , and production plans $\hat{y}_1, \hat{y}_2, \hat{k}_1, \hat{k}_2, \hat{\ell}_1, \hat{\ell}_2$ such that

• Given \hat{p}_1 , \hat{p}_2 , \hat{r} , \hat{w} , the consumer chooses \hat{c}_1 , \hat{c}_2 to solve

$$\begin{array}{l} \max \ \log \ c_1 + \log \ c_2 \\ \text{s. t.} \ \ \hat{p}_1 c_1 + \hat{p}_2 c_2 = \hat{r} \overline{k} + \hat{w} \overline{\ell}. \end{array}$$

- $\hat{p}_1 \hat{r} 2\hat{w} \le 0$, = 0 if $\hat{y}_1 > 0$, $\hat{p}_2 - 2\hat{r} - \hat{w} \le 0$, = 0 if $\hat{y}_2 > 0$.
- $\hat{y}_1 = \min[\hat{k}_1, \hat{\ell}_1/2],$

$$\hat{y}_2 = \min[\hat{k}_2 / 2, \hat{\ell}_2].$$

- $\begin{aligned} \bullet \quad \hat{k}_1 + \hat{k}_2 &\leq \overline{k} \ , \\ \hat{\ell}_1 + \hat{\ell}_2 &\leq \overline{\ell} \ . \end{aligned}$
- $\frac{\hat{p}_1}{\hat{p}_2} = \frac{\overline{p}_1}{\overline{p}_2}$ exogenously given.

(There are no longer conditions that $\hat{c}_1 = \hat{y}_1$, $\hat{c}_2 = \hat{y}_2$. Now the international terms of trade \hat{p}_1 / \hat{p}_2 are exogenously given. In a two country trade model, \hat{p}_1 / \hat{p}_2 would be determined by the conditions for equilibrium in the market for goods, $\hat{c}_1^1 + \hat{c}_1^2 = \hat{y}_1^1 + \hat{y}_1^2$ and $\hat{c}_2^1 + \hat{c}_2^2 = \hat{y}_2^1 + \hat{y}_2^2$. Here we are assuming that the country is too small to affect \hat{p}_1 / \hat{p}_2 .)

Suppose that, in the rest of the world

$$\frac{\hat{p}_1}{\hat{p}_2} = 1$$

Set $\hat{w} = 1$ (numeraire). We can use the zero profit conditions to solve for \hat{p}_2 , \hat{w} , \hat{r} :

$$\hat{p}_1 - 2\hat{r} - 1 = 0,$$

$$\hat{p}_2 - \hat{r} - 2 = 0 \iff \hat{p}_1 - \hat{r} - 2 = 0$$

We can solve to obtain $\hat{p}_1 = 3$, $\hat{p}_2 = 3$, $\hat{r} = 1$.

Solving the consumer's problem, we obtain

$$\hat{c}_1 = \frac{\hat{r}\bar{k} + \hat{w}\bar{\ell}}{2\hat{p}_1} = \frac{16 + 14}{2\cdot 3} = 5,$$
$$\hat{c}_2 = \frac{\hat{r}\bar{k} + \hat{w}\bar{\ell}}{2\hat{p}_2} = \frac{16 + 14}{2\cdot 3} = 5.$$

Small Open Economy Trade Equilibrium

	\hat{p}_{j}	\hat{c}_{j}	\hat{y}_{j}	$\hat{k_j}$	$\hat{\ell}_{j}$	ŕ	ŵ
good 1	3	5	4	4	8	1	1
good 2	3	5	6	12	6		

 $u(\hat{c}_1, \hat{c}_2) = \log 5 + \log 5 = \log 25$

Real income index $e^{1/2(u(\hat{c}_1, \hat{c}_2))} = \hat{c}_1^{1/2} \hat{c}_2^{1/2} = 5^{1/2} 5^{1/2} = 5$. Real income increases by a factor of 5.0000/4.8990 = 1.0206, a little more than 2 percent.

Who would be opposed to this?

Let us suppose that capitalists and workers are separate people. In autarky, the consumption of capitalists is

$$\hat{c}_{1}^{K} = \frac{\hat{r}\bar{k}}{2\hat{p}_{1}} = \frac{4}{2\cdot 9/4} = 0.8889$$
$$\hat{c}_{2}^{K} = \frac{\hat{r}\bar{k}}{2\hat{p}_{2}} = \frac{4}{2\cdot 6/4} = 1.3333.$$

The consumption of workers is $\hat{c}_1^L = \frac{\hat{w}\overline{\ell}}{2\hat{p}_1} = \frac{14}{2\cdot 9/4} = 3.1111, \ \hat{c}_2^L = \frac{\hat{w}\overline{\ell}}{2\hat{p}_2} = \frac{14}{2\cdot 6/4} = 4.6667.$

In trade,

$$\hat{c}_{1}^{K} = \hat{c}_{2}^{K} = \frac{16}{2 \cdot 3} = 2.6667$$

 $\hat{c}_{1}^{L} = \hat{c}_{2}^{L} = \frac{14}{2 \cdot 3} = 2.3333.$

The real income of capitalists goes from $(0.8889)^{1/2}(1.3333)^{1/2} = 1.0887$ to $(2.6667)^{1/2}(2.6667)^{1/2} = 2.6667$, an increase of 145 percent.

The real income of workers goes from $(3.1111)^{1/2}(4.6667)^{1/2} = 3.8103$ to $(2.6667)^{1/2}(2.6667)^{1/2} = 2.6667$, a decrease of 39 percent.

Specific Factors Model

Production technology:

$$y_1 = \ell_1^{1/2} k_1^{1/2} y_2 = \ell_2^{1/2} t_2^{1/2}.$$

Endowments:

$$\overline{k} = 1, \ \overline{t} = 4, \ \overline{\ell} = 32$$

Utility of the representative consumer/worker:

$$u(c_1, c_2) = \log c_1 + \log c_2.$$

Production Possibility Set

$$\begin{array}{c} \ell_1 + \ell_2 \leq 32 \\ k_1 &\leq 1 \\ t_2 &\leq 4 \end{array} \right\} \quad y_1^2 + y_2^2 / 4 \leq 32 \, .$$

An **autarky equilibrium** is a set of

goods prices \hat{p}_1 , \hat{p}_2 , factor prices \hat{r} , \hat{q} , \hat{w} , a consumption plan \hat{c}_1 , \hat{c}_2 , and production plans \hat{y}_1 , \hat{y}_2 , \hat{k}_1 , \hat{t}_2 , $\hat{\ell}_1$, $\hat{\ell}_2$ such that • Given \hat{p}_1 , \hat{p}_2 , \hat{r} , \hat{q} , \hat{w} , the consumer chooses \hat{c}_1 , \hat{c}_2 to solve

$$\begin{array}{ll} \max & \log \ c_1 + \log \ c_2 \\ \text{s. t.} & \hat{p}_1 c_1 + \hat{p}_2 c_2 = \hat{r} \overline{k} + \hat{q} \overline{t} + \hat{w} \overline{\ell}. \end{array}$$

- $\hat{r} = \hat{p}_1(1/2)\hat{\ell}_1^{1/2}\hat{k}_1^{-1/2}, \ \hat{w} = \hat{p}_1(1/2)\hat{\ell}_1^{-1/2}\hat{k}_1^{1/2},$ $\hat{q} = \hat{p}_2(1/2)\hat{\ell}_2^{1/2}\hat{t}_2^{-1/2}, \ \hat{w} = \hat{p}_2(1/2)\hat{\ell}_2^{-1/2}\hat{t}_2^{1/2}.$
- $\hat{c}_1 = \hat{y}_1$, $\hat{c}_2 = \hat{y}_2$.
- $\hat{y}_1 = \hat{\ell}_1^{1/2} \hat{k}_1^{1/2}$, $\hat{y}_2 = \hat{\ell}_2^{1/2} \hat{t}_2^{1/2}$.
- $\hat{\ell}_1 + \hat{\ell}_2 \leq \overline{\ell}$, $\hat{k}_1 \leq \overline{k}$, $\hat{t}_2 \leq \overline{t}$.

Solving the consumer's problem, we obtain

$$\hat{c}_1 = \frac{\hat{r}\overline{k} + \hat{q}\overline{t} + \hat{w}\overline{\ell}}{2\hat{p}_1}, \ \hat{c}_2 = \frac{\hat{r}\overline{k} + \hat{q}\overline{t} + \hat{w}\overline{\ell}}{2\hat{p}_2}$$

which imply

$$\frac{\hat{c}_2}{\hat{c}_1} = \frac{\hat{p}_1}{\hat{p}_2}.$$

From the profit maximization conditions (factor prices equal marginal revenue product), we know that

$$w = p_1(1/2)\ell_1^{-1/2}k_1^{1/2} = p_2(1/2)\ell_2^{-1/2}t_2^{1/2}$$
$$\frac{p_1}{p_2} = \frac{\ell_2^{-1/2}t_2^{1/2}}{\ell_1^{-1/2}k_1^{1/2}} = \left(\frac{\ell_1^{1/2}k_1^{1/2}}{\ell_2^{1/2}t_2^{1/2}}\right)\left(\frac{t_2}{k_1}\right) = \left(\frac{y_1}{y_2}\right)\left(\frac{t_2}{k_1}\right) = \left(\frac{y_1}{y_2}\right)\left(\frac{4}{1}\right).$$

Setting $c_1 = y_1$, $c_2 = y_2$, we obtain

$$\frac{y_2}{y_1} = \frac{p_1}{p_2} = \left(\frac{y_1}{y_2}\right) \left(\frac{4}{1}\right)$$

MRS = price ratio = MRT
$$\left(\frac{y_2}{y_1}\right)^2 = 4 \implies y_2 = 2y_1.$$

Plugging this into the production possibility frontier, we obtain

$$y_1^2 + y_2^2 / 4 = 32$$

$$y_1^2 + (2y_1)^2 / 4 = 32$$

$$2y_1^2 = 32$$

$$y_1 = 4, \quad y_1 = 8.$$

Autarky Equilibrium

	\hat{p}_{j}	\hat{c}_{j}	\hat{y}_{j}	\hat{k}_{j}	\hat{t}_{j}	$\hat{\ell}_{j}$	r	\hat{q}	ŵ
good 1	8	4	4	1	0	16	16	4	1
good 2	4	8	8	0	4	16			

 $u(\hat{c}_1, \hat{c}_2) = \log 4 + \log 8 = 3.4657$

Real income index $e^{1/2(u(\hat{c}_1,\hat{c}_2))} = \hat{c}_1^{1/2}\hat{c}_2^{1/2} = 4^{1/2}8^{1/2} = 5.6569$.

Trade Equilibrium for a Small Open Economy

Terms of trade $\frac{\hat{p}_1}{\hat{p}_2}$ are determined by the rest of the world.

An **trade equilibrium** is a set of goods prices \hat{p}_1 , \hat{p}_2 ,

factor prices \hat{r} , \hat{q} , \hat{w} , a consumption plan \hat{c}_1 , \hat{c}_2 , and production plans \hat{y}_1 , \hat{y}_2 , \hat{k}_1 , \hat{t}_2 , $\hat{\ell}_1$, $\hat{\ell}_2$ such that • Given \hat{p}_1 , \hat{p}_2 , \hat{r} , \hat{q} , \hat{w} , the consumer chooses \hat{c}_1 , \hat{c}_2 to solve

$$\begin{array}{ll} \max & \log \ c_1 + \log \ c_2 \\ \text{s. t.} & \hat{p}_1 c_1 + \hat{p}_2 c_2 = \hat{r} \overline{k} + \hat{q} \overline{t} + \hat{w} \overline{\ell}. \end{array}$$

- $\hat{r} = \hat{p}_1(1/2)\hat{\ell}_1^{1/2}\hat{k}_1^{-1/2}, \ \hat{w} = \hat{p}_1(1/2)\hat{\ell}_1^{-1/2}\hat{k}_1^{1/2},$ $\hat{q} = \hat{p}_2(1/2)\hat{\ell}_2^{1/2}\hat{t}_2^{-1/2}, \ \hat{w} = \hat{p}_2(1/2)\hat{\ell}_2^{-1/2}\hat{t}_2^{1/2}.$
- $\hat{y}_1 = \hat{\ell}_1^{1/2} \hat{k}_1^{1/2}$, $\hat{y}_2 = \hat{\ell}_2^{1/2} \hat{t}_2^{1/2}$.
- $\begin{aligned} \bullet \quad \hat{\ell}_1 + \hat{\ell}_2 &\leq \overline{\ell} \;, \\ \hat{k}_1 &\leq \overline{k} \;, \\ \hat{\ell}_2 &\leq \overline{\ell} \;. \end{aligned}$
- $\frac{\hat{p}_1}{\hat{p}_2} = \frac{\overline{p}_1}{\overline{p}_2}$ exogenously given.

(There are no longer conditions that $\hat{c}_1 = \hat{y}_1$, $\hat{c}_2 = \hat{y}_2$.)

Suppose that, in the rest of the world

$$\frac{\hat{p}_1}{\hat{p}_2} = 1.$$

It is still the case that profit maximization implies

$$w = p_1(1/2)\ell_1^{-1/2}k_1^{1/2} = p_2(1/2)\ell_2^{-1/2}t_2^{1/2}$$
$$\frac{p_1}{p_2} = \frac{\ell_2^{-1/2}t_2^{1/2}}{\ell_1^{-1/2}k_1^{1/2}} = \left(\frac{\ell_1^{1/2}k_1^{1/2}}{\ell_2^{1/2}t_2^{1/2}}\right)\left(\frac{t_2}{k_1}\right) = \left(\frac{y_1}{y_2}\right)\left(\frac{t_2}{k_1}\right) = \left(\frac{y_1}{y_2}\right)\left(\frac{4}{1}\right).$$

Since $p_1 / p_2 = 1$, this implies that

$$y_2 = 4y_1$$
.

Plugging this into the production possibility frontier, we obtain

$$y_1^2 + y_2^2 / 4 = 32$$

$$y_1^2 + (4y_1)^2 / 4 = 32$$

 $5y_1^2 = 32$
 $y_1 = (32/5)^{1/2} = 2.5298, \quad y_2 = 4(32/5)^{1/2} = 10.1193.$

To obtain factor inputs, we plug into the production function

$$y_1 = \ell_1^{1/2} k_1^{1/2}$$

2.5298 = $\ell_1^{1/2} (1)^{1/2}$
 $\ell_1 = 32/5 = 6.4000$
 $\ell_2 = 32 - 6.4000 = 25.6000$.

To obtain goods prices and factor prices, we set $\hat{w} = 1$ (numeraire) and then plug into the profit maximization conditions,

$$1 = p_1(1/2) (6.4)^{1/2} (1)^{1/2} \implies p_1 = 5.0596, p_2 = 5.0596$$

$$r = p_1(1/2) (6.4)^{1/2} (1)^{-1/2} = 5.0596(1/2) (6.4)^{1/2} = 6.4000$$

$$q = p_2(1/2) (25.6)^{1/2} (4)^{-1/2} = 5.0596(1/2) (25.6)^{1/2} (4)^{-1/2} = 6.4000.$$

To obtain consumption levels, we plug into the demand functions,

$$\begin{split} \hat{c}_1 &= \frac{\hat{r}\overline{k} + \hat{q}\overline{t} + \hat{w}\overline{\ell}}{2\hat{p}_1} = 6.3246\\ \hat{c}_2 &= \frac{\hat{r}\overline{k} + \hat{q}\overline{t} + \hat{w}\overline{\ell}}{2\hat{p}_2} = 6.3246 \,. \end{split}$$

Small Open Economy Trade Equilibrium

	\hat{p}_{j}	\hat{c}_{j}	\hat{y}_{j}	\hat{k}_{j}	\hat{t}_{j}	$\hat{\ell}_{j}$	r	\hat{q}	ŵ
good 1	5.0596	6.3246	2.5298	1	0	6.4	6.4	6.4	1
good 2	5.0596	6.3246	10.1193	0	4	25.6			

 $u(\hat{c}_1, \hat{c}_2) = \log 6.3246 + \log 6.3246 = 3.6889$

Real income index $e^{1/2(u(\hat{c}_1,\hat{c}_2))} = \hat{c}_1^{1/2}\hat{c}_2^{1/2} = 6.3246^{1/2}6.3246^{1/2} = 6.3246$. Real income increases by a factor of 6.3246/5.6569 = 1.1180, almost 12 percent.

Who would be opposed to this?

Let us suppose that capitalists, landowners, and workers are separate people. In autarky, the consumption of capitalists is $\hat{c}_1^K = \frac{\hat{r}\overline{k}}{2\hat{p}_1} = \frac{16\cdot 1}{2\cdot 8} = 1$, $\hat{c}_2^K = \frac{\hat{r}\overline{k}}{2\hat{p}_2} = \frac{16\cdot 1}{2\cdot 4} = 2$. The consumption of landowners is $\hat{c}_1^T = \frac{\hat{q}\overline{t}}{2\hat{p}_1} = \frac{4\cdot 4}{2\cdot 8} = 1$, $\hat{c}_2^T = \frac{\hat{q}\overline{t}}{2\hat{p}_2} = \frac{4\cdot 4}{2\cdot 4} = 2$. The consumption of workers is $\hat{c}_1^L = \frac{\hat{w}\overline{\ell}}{2\hat{p}_1} = \frac{1\cdot 32}{2\cdot 8} = 2$, $\hat{c}_2^L = \frac{\hat{w}\overline{\ell}}{2\hat{p}_2} = \frac{1\cdot 32}{2\cdot 4} = 4$.

In trade,

$$\hat{c}_{1}^{K} = \hat{c}_{2}^{K} = \frac{6.4 \cdot 1}{2 \cdot 5.0596} = 0.6325$$
$$\hat{c}_{1}^{T} = \hat{c}_{2}^{T} = \frac{6.4 \cdot 4}{2 \cdot 5.0596} = 2.5298$$
$$\hat{c}_{1}^{L} = \hat{c}_{2}^{L} = \frac{1 \cdot 32}{2 \cdot 5.0596} = 3.1623.$$

The real income of capitalists goes from $(1)^{1/2}(2)^{1/2} = 1.4142$ to $(0.6325)^{1/2}(0.6325)^{1/2} = 0.6325$, an decrease of 55 percent.

The real income of landowners goes from $(1)^{1/2}(2)^{1/2} = 1.4142$ to $(2.5298)^{1/2}(2.5298)^{1/2} = 2.5298$, an increase of 79 percent.

The real income of workers goes from $(2)^{1/2}(4)^{1/2} = 2.8284$ to $(3.1623)^{1/2}(3.1623)^{1/2} = 3.1623$, an increase of 12 percent.

Equilibrium in a World Trade Model

We define an equilibrium for a world economy with m countries. We consider only the case of a world with identical, fixed proportions production functions in each country. The definition for a world with identical, specific factors production technologies should be obvious.

Production technology:

$$y_1 = \min[k_1, \ell_1/2] = k_1 = \ell_1/2$$

$$y_2 = \min[k_2/2, \ell_2] = k_2/2 = \ell_2.$$

Endowments:

$$\overline{k}^i$$
, $\overline{\ell}^i$ in each country, $i = 1, 2, ..., m$.

Utility of the representative consumer/worker in country i, i = 1, 2, ..., m:

$$u(c_1^i, c_2^i) = \log c_1^i + \log c_2^i$$

A **trade equilibrium** is a set of goods prices \hat{p}_1 , \hat{p}_2 , factor prices \hat{r}^i , \hat{w}^i , i = 1, 2, ..., m, consumption plans \hat{c}_1^i , \hat{c}_2^i , i = 1, 2, ..., m, and production plans \hat{y}_1^i , \hat{y}_2^i , \hat{k}_1^i , \hat{k}_2^i , $\hat{\ell}_1^i$, $\hat{\ell}_2^i$, i = 1, 2, ..., m, such that

• Given \hat{p}_1 , \hat{p}_2 , \hat{r}^i , \hat{w}^i , the consumer in country *i* chooses \hat{c}_1^i , \hat{c}_2^i to solve

max log
$$c_1^i + \log c_2^i$$

s. t. $\hat{p}_1 c_1^i + \hat{p}_2 c_2^i = \hat{r}^i \overline{k}^i + \hat{w}^i \overline{\ell}^i$.

- $$\begin{split} \bullet \quad \hat{p}_1 \hat{r}^i 2\hat{w}^i \leq 0 \,, \ &= 0 \text{ if } \hat{y}_1^i > 0 \,, \\ \hat{p}_2 2\hat{r}^i \hat{w}^i \leq 0 \,, \ &= 0 \text{ if } \hat{y}_2^i > 0 \,. \end{split}$$
- $\hat{y}_1^i = \min[\hat{k}_1^i, \hat{\ell}_1^i/2],$ $\hat{y}_2^i = \min[\hat{k}_2^i/2, \hat{\ell}_2^i].$
- $\hat{c}_1^1 + \hat{c}_1^2 + \ldots + \hat{c}_1^m = \hat{y}_1^1 + \hat{y}_1^2 + \ldots + \hat{y}_1^m$, $\hat{c}_2^1 + \hat{c}_2^2 + \ldots + \hat{c}_2^m = \hat{y}_2^1 + \hat{y}_2^2 + \ldots + \hat{y}_2^m$.
- $\hat{k}_1^i + \hat{k}_2^i \le \overline{k}^i$, i = 1, 2, ..., m, $\hat{\ell}_1^i + \hat{\ell}_2^i \le \overline{\ell}^i$, i = 1, 2, ..., m.

Points to notice:

- 1. We usually consider the case where there are two countries, m = 2, in examples.
- 2. If there are two countries, i and j, that both produce both of the two goods,

$$\hat{y}_1^i > 0$$
, $\hat{y}_2^i > 0$ and $\hat{y}_1^j > 0$, $\hat{y}_2^j > 0$,

then the profit maximization conditions imply that the factor prices in the two countries are equal, prices $\hat{r}^i = \hat{r}^j$, $\hat{w}^i = \hat{w}^j$.

3. If $\hat{y}_j^i - \hat{c}_j^i$ is positive, then $\hat{y}_j^i - \hat{c}_j^i$ is the amount of good *j* exported by country *i*. If $\hat{y}_j^i - \hat{c}_j^i$ is negative, then $\hat{c}_j^i - \hat{y}_j^i$ is the amount of good *j* imported by country *i*.

A Note on Real Income

We calculate real income using a monotonic transformation of the utility function that is homogenous of degree one:

$$r(c_1, c_2) = e^{(1/2)(\log c_1 + \log c_2)} = c_1^{1/2} c_2^{1/2}$$

The monotonic transformation $v(u) = e^{(1/2)u}$ ensures that $c_1^{1/2}c_2^{1/2}$ represents the same consumer preferences (that is, has the same indifference curves) as $\log c_1 + \log c_2$. It is easy to verify that $r(c_1, c_2) = c_1^{1/2}c_2^{1/2}$ is homogenous of degree one:

$$r(\theta c_1, \theta c_2) = (\theta c_1)^{1/2} (\theta c_2)^{1/2} = \theta c_1^{1/2} c_2^{1/2} = \theta r(c_1, c_2).$$

This means that we can meaningfully talk about percent changes in real income.

Our concept of changes in real income is what is traditionally known as the equivalent variation: In measuring the change in real income between situation 1 and situation 2, we ask by how much would we need to change income in situation 1, keeping prices fixed at situation 1 prices, to make a consumer indifferent between his or her consumption bundle in situation 1 and his or her consumption bundle in situation 2.

In the autarky equilibrium of our economy in the fixed proportions model real income is

$$r(4,6) = 4^{1/2}6^{1/2} = 4.8990$$
.

In the trade equilibrium, real income rises to

$$r(5,5) = 5^{1/2} 5^{1/2} = 5.0000$$
.

The increase in real income is 2.06 percent.

Let us verify that this is indeed the equivalent variation: In autarky, prices are $\hat{p}_1 = 9/4$, $\hat{p}_1 = 6/4$, and income is $\hat{rk} + \hat{w}\overline{\ell} = (1/4)16 + (1)14 = 18$. Suppose instead, income were 2.06 percent higher,

$$(1.0206)18 = 18.3711.$$

Then consumer demands would be

$$\hat{c}_1 = \frac{18.3711}{2\hat{p}_1} = \frac{18.3711}{2(9/4)} = 4.0825$$
$$\hat{c}_2 = \frac{18.3711}{2\hat{p}_2} = \frac{18.3711}{2(6/4)} = 6.1237.$$

Notice that, as we claimed, r(5,5) = r(4.0825, 6.1237) = 5.0000 (and that, of course, $\log 5 + \log 5 = \log 4.0825 + \log 6.1237 = 3.2189$).