HECKSCHER-OHLIN MODEL

Fixed Proportions Model

Production technology:

$$
\begin{aligned}
y_{1} & =\min \left[k_{1}, \ell_{1} / 2\right]=k_{1}=\ell_{1} / 2 \\
y_{2} & =\min \left[k_{2} / 2, \ell_{2}\right]=k_{2} / 2=\ell_{2} .
\end{aligned}
$$

Endowments:

$$
\bar{k}=16, \bar{\ell}=14 .
$$

Utility of the representative consumer/worker:

$$
u\left(c_{1}, c_{2}\right)=\log c_{1}+\log c_{2} .
$$

Production Possibility Set

$$
\begin{array}{ll}
k_{1}+k_{2} \leq \bar{k} & \ell_{1}+\ell_{2} \leq \bar{\ell} \\
y_{1}+2 y_{2} \leq 16 & 2 y_{1}+y_{2} \leq 14
\end{array}
$$

An autarky equilibrium is a set of goods prices \hat{p}_{1}, \hat{p}_{2},
factor prices \hat{r}, \hat{w}, a consumption plan \hat{c}_{1}, \hat{c}_{2}, and production plans $\hat{y}_{1}, \hat{y}_{2}, \hat{k}_{1}, \hat{k}_{2}, \hat{\ell}_{1}, \hat{\ell}_{2}$ such that

- Given $\hat{p}_{1}, \hat{p}_{2}, \hat{r}, \hat{w}$, the consumer chooses \hat{c}_{1}, \hat{c}_{2} to solve

$$
\begin{array}{ll}
\max & \log c_{1}+\log c_{2} \\
\text { s. t. } & \hat{p}_{1} c_{1}+\hat{p}_{2} c_{2}=\hat{r} \bar{k}+\hat{w} \bar{\ell} .
\end{array}
$$

- $\hat{p}_{1}-\hat{r}-2 \hat{w} \leq 0$, $=0$ if $\hat{y}_{1}>0$, $\hat{p}_{2}-2 \hat{r}-\hat{w} \leq 0,=0$ if $\hat{y}_{2}>0$.
- $\hat{c}_{1}=\hat{y}_{1}$,
$\hat{c}_{2}=\hat{y}_{2}$.
- $\hat{y}_{1}=\min \left[\hat{k}_{1}, \hat{\ell}_{1} / 2\right]$,
$\hat{y}_{2}=\min \left[\hat{k}_{2} / 2, \hat{\ell}_{2}\right]$.
- $\hat{k}_{1}+\hat{k}_{2} \leq \bar{k}$,

$$
\hat{\ell}_{1}+\hat{\ell}_{2} \leq \bar{\ell} .
$$

Solving the consumer's problem, we obtain

$$
\hat{c}_{1}=\frac{\hat{r} \bar{k}+\hat{w} \bar{\ell}}{2 \hat{p}_{1}}, \hat{c}_{2}=\frac{\hat{r} \bar{k}+\hat{w} \bar{\ell}}{2 \hat{p}_{2}},
$$

which imply

$$
\frac{\hat{c}_{2}}{\hat{c}_{1}}=\frac{\hat{p}_{1}}{\hat{p}_{2}} .
$$

Guess that $\hat{c}_{1}=\hat{y}_{1}=4, \hat{c}_{2}=\hat{y}_{2}=6$. This implies that

$$
\frac{\hat{p}_{1}}{\hat{p}_{2}}=\frac{6}{4}=\frac{3}{2} .
$$

Set $\hat{w}=1$ (numeraire). We can use the zero profit conditions to solve for $\hat{p}_{2}, \hat{w}, \hat{r}$:

$$
\begin{gathered}
\hat{p}_{1}-\hat{r}-2=0, \\
\hat{p}_{2}-2 \hat{r}-1=0 \Leftrightarrow \frac{2}{3} \hat{p}_{1}-2 r-1=0 .
\end{gathered}
$$

We can solve to obtain $\hat{p}_{1}=9 / 4=2.2500, \hat{p}_{2}=6 / 4=1.5000, \hat{r}=1 / 4=0.2500$.

Autarky Equilibrium

	\hat{p}_{j}	\hat{c}_{j}	\hat{y}_{j}	\hat{k}_{j}	$\hat{\ell}_{j}$	\hat{r}	\hat{w}
good 1	$9 / 4$	4	4	4	8	$1 / 4$	1
good 2	$6 / 4$	6	6	12	6		

$$
u\left(\hat{c}_{1}, \hat{c}_{2}\right)=\log 4+\log 6=3.1781
$$

Real income index $e^{1 / 2\left(u\left(\hat{c}_{1}, \hat{c}_{2}\right)\right)}=\hat{c}_{1}^{1 / 2} \hat{c}_{2}^{1 / 2}=4^{1 / 2} 6^{1 / 2}=4.8990$.

Trade Equilibrium for a Small Open Economy

Terms of trade $\frac{\hat{p}_{1}}{\hat{p}_{2}}$ are determined in the rest of the world.
A trade equilibrium is a set of goods prices \hat{p}_{1}, \hat{p}_{2},
factor prices \hat{r}, \hat{w},
a consumption plan \hat{c}_{1}, \hat{c}_{2},
and production plans $\hat{y}_{1}, \hat{y}_{2}, \hat{k}_{1}, \hat{k}_{2}, \hat{\ell}_{1}, \hat{\ell}_{2}$
such that

- Given $\hat{p}_{1}, \hat{p}_{2}, \hat{r}, \hat{w}$, the consumer chooses \hat{c}_{1}, \hat{c}_{2} to solve
$\max \log c_{1}+\log c_{2}$
s. t. $\hat{p}_{1} c_{1}+\hat{p}_{2} c_{2}=\hat{r} \bar{k}+\hat{w} \bar{\ell}$.
- $\hat{p}_{1}-\hat{r}-2 \hat{w} \leq 0$, $=0$ if $\hat{y}_{1}>0$,
$\hat{p}_{2}-2 \hat{r}-\hat{w} \leq 0,=0$ if $\hat{y}_{2}>0$.
- $\hat{y}_{1}=\min \left[\hat{k}_{1}, \hat{\ell}_{1} / 2\right]$,

$$
\hat{y}_{2}=\min \left[\hat{k}_{2} / 2, \hat{\ell}_{2}\right]
$$

- $\hat{k}_{1}+\hat{k}_{2} \leq \bar{k}$, $\hat{\ell}_{1}+\hat{\ell}_{2} \leq \bar{\ell}$.
- $\frac{\hat{p}_{1}}{\hat{p}_{2}}=\frac{\bar{p}_{1}}{\bar{p}_{2}}$ exogenously given.
(There are no longer conditions that $\hat{c}_{1}=\hat{y}_{1}, \hat{c}_{2}=\hat{y}_{2}$. Now the international terms of trade $\hat{p}_{1} / \hat{p}_{2}$ are exogenously given. In a two country trade model, $\hat{p}_{1} / \hat{p}_{2}$ would be determined by the conditions for equilibrium in the market for goods, $\hat{c}_{1}^{1}+\hat{c}_{1}^{2}=\hat{y}_{1}^{1}+\hat{y}_{1}^{2}$ and $\hat{c}_{2}^{1}+\hat{c}_{2}^{2}=\hat{y}_{2}^{1}+\hat{y}_{2}^{2}$. Here we are assuming that the country is too small to affect $\hat{p}_{1} / \hat{p}_{2}$.)

Suppose that, in the rest of the world

$$
\frac{\hat{p}_{1}}{\hat{p}_{2}}=1 .
$$

Set $\hat{w}=1$ (numeraire). We can use the zero profit conditions to solve for $\hat{p}_{2}, \hat{w}, \hat{r}$:

$$
\begin{gathered}
\hat{p}_{1}-2 \hat{r}-1=0, \\
\hat{p}_{2}-\hat{r}-2=0 \Leftrightarrow \hat{p}_{1}-\hat{r}-2=0 .
\end{gathered}
$$

We can solve to obtain $\hat{p}_{1}=3, \hat{p}_{2}=3, \hat{r}=1$.
Solving the consumer's problem, we obtain

$$
\begin{aligned}
& \hat{c}_{1}=\frac{\hat{r} \bar{k}+\hat{w} \bar{\ell}}{2 \hat{p}_{1}}=\frac{16+14}{2 \cdot 3}=5, \\
& \hat{c}_{2}=\frac{\hat{r} \hat{k}+\hat{w} \bar{\ell}}{2 \hat{p}_{2}}=\frac{16+14}{2 \cdot 3}=5 .
\end{aligned}
$$

Small Open Economy Trade Equilibrium

	\hat{p}_{j}	\hat{c}_{j}	\hat{y}_{j}	\hat{k}_{j}	$\hat{\ell}_{j}$	\hat{r}	\hat{w}
good 1	3	5	4	4	8	1	1
good 2	3	5	6	12	6		

$$
u\left(\hat{c}_{1}, \hat{c}_{2}\right)=\log 5+\log 5=\log 25
$$

Real income index $e^{\left.1 / 2\left(u \hat{c}_{1}, \hat{c}_{2}\right)\right)}=\hat{c}_{1}^{1 / 2} \hat{c}_{2}^{1 / 2}=5^{1 / 2} 5^{1 / 2}=5$. Real income increases by a factor of $5.0000 / 4.8990=1.0206$, a little more than 2 percent.

Who would be opposed to this?

Let us suppose that capitalists and workers are separate people. In autarky, the consumption of capitalists is

$$
\begin{aligned}
& \hat{c}_{1}^{K}=\frac{\hat{r} \bar{k}}{2 \hat{p}_{1}}=\frac{4}{2 \cdot 9 / 4}=0.8889 \\
& \hat{c}_{2}^{K}=\frac{\hat{r} \bar{k}}{2 \hat{p}_{2}}=\frac{4}{2 \cdot 6 / 4}=1.3333 .
\end{aligned}
$$

The consumption of workers is $\hat{c}_{1}^{L}=\frac{\hat{w} \bar{\ell}}{2 \hat{p}_{1}}=\frac{14}{2 \cdot 9 / 4}=3.1111, \hat{c}_{2}^{L}=\frac{\hat{w} \bar{\ell}}{2 \hat{p}_{2}}=\frac{14}{2 \cdot 6 / 4}=4.6667$.
In trade,

$$
\begin{aligned}
& \hat{c}_{1}^{K}=\hat{c}_{2}^{K}=\frac{16}{2 \cdot 3}=2.6667 \\
& \hat{c}_{1}^{L}=\hat{c}_{2}^{L}=\frac{14}{2 \cdot 3}=2.3333
\end{aligned}
$$

The real income of capitalists goes from $(0.8889)^{1 / 2}(1.3333)^{1 / 2}=1.0887$ to $(2.6667)^{1 / 2}(2.6667)^{1 / 2}=2.6667$, an increase of 145 percent.

The real income of workers goes from $(3.1111)^{1 / 2}(4.6667)^{1 / 2}=3.8103$ to $(2.6667)^{1 / 2}(2.6667)^{1 / 2}=2.6667$, a decrease of 39 percent.

Specific Factors Model

Production technology:

$$
\begin{aligned}
& y_{1}=\ell_{1}^{1 / 2} k_{1}^{1 / 2} \\
& y_{2}=\ell_{2}^{1 / 2} t_{2}^{1 / 2}
\end{aligned}
$$

Endowments:

$$
\bar{k}=1, \bar{t}=4, \bar{\ell}=32 .
$$

Utility of the representative consumer/worker:

$$
u\left(c_{1}, c_{2}\right)=\log c_{1}+\log c_{2} .
$$

Production Possibility Set

$$
\left.\begin{array}{cc}
\ell_{1}+\ell_{2} \leq 32 \\
k_{1} & \leq 1 \\
t_{2} & \leq 4
\end{array}\right\} y_{1}^{2}+y_{2}^{2} / 4 \leq 32
$$

An autarky equilibrium is a set of
goods prices \hat{p}_{1}, \hat{p}_{2},
factor prices $\hat{r}, \hat{q}, \hat{w}$, a consumption plan \hat{c}_{1}, \hat{c}_{2}, and production plans $\hat{y}_{1}, \hat{y}_{2}, \hat{k}_{1}, \hat{t}_{2}, \hat{\ell}_{1}, \hat{\ell}_{2}$ such that

- Given $\hat{p}_{1}, \hat{p}_{2}, \hat{r}, \hat{q}, \hat{w}$, the consumer chooses \hat{c}_{1}, \hat{c}_{2} to solve

$$
\begin{array}{ll}
\max & \log c_{1}+\log c_{2} \\
\text { s. t. } & \hat{p}_{1} c_{1}+\hat{p}_{2} c_{2}=\hat{r} \bar{k}+\hat{q} \bar{t}+\hat{w} \bar{\ell}
\end{array}
$$

- $\hat{r}=\hat{p}_{1}(1 / 2) \hat{\ell}_{1}^{1 / 2} \hat{k}_{1}^{-1 / 2}, \hat{w}=\hat{p}_{1}(1 / 2) \hat{\ell}_{1}^{-1 / 2} \hat{k}_{1}^{1 / 2}$, $\hat{q}=\hat{p}_{2}(1 / 2) \hat{\ell}_{2}^{1 / 2} \hat{t}_{2}^{-1 / 2}, \hat{w}=\hat{p}_{2}(1 / 2) \hat{\ell}_{2}^{-1 / 2} \hat{t}_{2}^{1 / 2}$.
- $\hat{c}_{1}=\hat{y}_{1}$,
$\hat{c}_{2}=\hat{y}_{2}$.
- $\hat{y}_{1}=\hat{\ell}_{1}^{1 / 2} \hat{k}_{1}^{1 / 2}$,
$\hat{y}_{2}=\hat{\ell}_{2}^{1 / 2} \hat{t}_{2}^{1 / 2}$.
- $\hat{\ell}_{1}+\hat{\ell}_{2} \leq \bar{\ell}$,
$\hat{k}_{1} \leq \bar{k}$,
$\hat{t}_{2} \leq \bar{t}$.

Solving the consumer's problem, we obtain

$$
\hat{c}_{1}=\frac{\hat{r} \bar{k}+\hat{q} \bar{t}+\hat{w} \bar{\ell}}{2 \hat{p}_{1}}, \hat{c}_{2}=\frac{\hat{r} \bar{k}+\hat{q} \bar{t}+\hat{w} \bar{\ell}}{2 \hat{p}_{2}},
$$

which imply

$$
\frac{\hat{c}_{2}}{\hat{c}_{1}}=\frac{\hat{p}_{1}}{\hat{p}_{2}} .
$$

From the profit maximization conditions (factor prices equal marginal revenue product), we know that

$$
\begin{gathered}
w=p_{1}(1 / 2) \ell_{1}^{-1 / 2} k_{1}^{1 / 2}=p_{2}(1 / 2) \ell_{2}^{-1 / 2} t_{2}^{1 / 2} \\
\frac{p_{1}}{p_{2}}=\frac{\ell_{2}^{-1 / 2} t_{2}^{1 / 2}}{\ell_{1}^{-1 / 2} k_{1}^{1 / 2}}=\left(\frac{\ell_{1}^{1 / 2} k_{1}^{1 / 2}}{\ell_{2}^{1 / 2} t_{2}^{1 / 2}}\right)\left(\frac{t_{2}}{k_{1}}\right)=\left(\frac{y_{1}}{y_{2}}\right)\left(\frac{t_{2}}{k_{1}}\right)=\left(\frac{y_{1}}{y_{2}}\right)\left(\frac{4}{1}\right) .
\end{gathered}
$$

Setting $c_{1}=y_{1}, c_{2}=y_{2}$, we obtain

$$
\begin{aligned}
\frac{y_{2}}{y_{1}} & =\frac{p_{1}}{p_{2}}=\left(\frac{y_{1}}{y_{2}}\right)\left(\frac{4}{1}\right) \\
\text { MRS } & =\text { price ratio }=\text { MRT } \\
\left(\frac{y_{2}}{y_{1}}\right)^{2} & =4 \Rightarrow y_{2}=2 y_{1} .
\end{aligned}
$$

Plugging this into the production possibility frontier, we obtain

$$
\begin{gathered}
y_{1}^{2}+y_{2}^{2} / 4=32 \\
y_{1}^{2}+\left(2 y_{1}\right)^{2} / 4=32 \\
2 y_{1}^{2}=32 \\
y_{1}=4, \quad y_{1}=8 .
\end{gathered}
$$

Autarky Equilibrium

	\hat{p}_{j}	\hat{c}_{j}	\hat{y}_{j}	\hat{k}_{j}	\hat{t}_{j}	$\hat{\ell}_{j}$	\hat{r}	\hat{q}	\hat{w}
good 1	8	4	4	1	0	16	16	4	1
good 2	4	8	8	0	4	16			

$$
u\left(\hat{c}_{1}, \hat{c}_{2}\right)=\log 4+\log 8=3.4657
$$

Real income index $e^{1 / 2\left(u\left(\hat{c}_{1}, \hat{c}_{2}\right)\right)}=\hat{c}_{1}^{1 / 2} \hat{c}_{2}^{1 / 2}=4^{1 / 2} 8^{1 / 2}=5.6569$.

Trade Equilibrium for a Small Open Economy

Terms of trade $\frac{\hat{p}_{1}}{\hat{p}_{2}}$ are determined by the rest of the world.
An trade equilibrium is a set of goods prices \hat{p}_{1}, \hat{p}_{2}, factor prices $\hat{r}, \hat{q}, \hat{w}$, a consumption plan \hat{c}_{1}, \hat{c}_{2}, and production plans $\hat{y}_{1}, \hat{y}_{2}, \hat{k}_{1}, \hat{t}_{2}, \hat{\ell}_{1}, \hat{\ell}_{2}$ such that

- Given $\hat{p}_{1}, \hat{p}_{2}, \hat{r}, \hat{q}, \hat{w}$, the consumer chooses \hat{c}_{1}, \hat{c}_{2} to solve

$$
\begin{array}{ll}
\max & \log c_{1}+\log c_{2} \\
\text { s. t. } & \hat{p}_{1} c_{1}+\hat{p}_{2} c_{2}=\hat{r} \bar{k}+\hat{q} \bar{t}+\hat{w} \bar{\ell}
\end{array}
$$

- $\hat{r}=\hat{p}_{1}(1 / 2) \hat{\ell}_{1}^{1 / 2} \hat{k}_{1}^{-1 / 2}, \hat{w}=\hat{p}_{1}(1 / 2) \hat{\ell}_{1}^{-1 / 2} \hat{k}_{1}^{1 / 2}$, $\hat{q}=\hat{p}_{2}(1 / 2) \hat{\ell}_{2}^{1 / 2} \hat{t}_{2}^{-1 / 2}, \hat{w}=\hat{p}_{2}(1 / 2) \hat{\ell}_{2}^{-1 / 2} \hat{t}_{2}^{1 / 2}$.
- $\hat{y}_{1}=\hat{\ell}_{1}^{1 / 2} \hat{k}_{1}^{1 / 2}$,
$\hat{y}_{2}=\hat{\ell}_{2}^{1 / 2} \hat{t}_{2}^{1 / 2}$.
- $\hat{\ell}_{1}+\hat{\ell}_{2} \leq \bar{\ell}$,
$\hat{k}_{1} \leq \bar{k}$,
$\hat{t}_{2} \leq \bar{t}$.
- $\frac{\hat{p}_{1}}{\hat{p}_{2}}=\frac{\bar{p}_{1}}{\bar{p}_{2}}$ exogenously given.
(There are no longer conditions that $\hat{c}_{1}=\hat{y}_{1}, \hat{c}_{2}=\hat{y}_{2}$.)
Suppose that, in the rest of the world

$$
\frac{\hat{p}_{1}}{\hat{p}_{2}}=1
$$

It is still the case that profit maximization implies

$$
\begin{gathered}
w=p_{1}(1 / 2) \ell_{1}^{-1 / 2} k_{1}^{1 / 2}=p_{2}(1 / 2) \ell_{2}^{-1 / 2} t_{2}^{1 / 2} \\
\frac{p_{1}}{p_{2}}=\frac{\ell_{2}^{-1 / 2} t_{2}^{1 / 2}}{\ell_{1}^{-1 / 2} k_{1}^{1 / 2}}=\left(\frac{\ell_{1}^{1 / 2} k_{1}^{1 / 2}}{\ell_{2}^{1 / 2} t_{2}^{1 / 2}}\right)\left(\frac{t_{2}}{k_{1}}\right)=\left(\frac{y_{1}}{y_{2}}\right)\left(\frac{t_{2}}{k_{1}}\right)=\left(\frac{y_{1}}{y_{2}}\right)\left(\frac{4}{1}\right) .
\end{gathered}
$$

Since $p_{1} / p_{2}=1$, this implies that

$$
y_{2}=4 y_{1} .
$$

Plugging this into the production possibility frontier, we obtain

$$
y_{1}^{2}+y_{2}^{2} / 4=32
$$

$$
\begin{gathered}
y_{1}^{2}+\left(4 y_{1}\right)^{2} / 4=32 \\
5 y_{1}^{2}=32 \\
y_{1}=(32 / 5)^{1 / 2}=2.5298, \quad y_{2}=4(32 / 5)^{1 / 2}=10.1193
\end{gathered}
$$

To obtain factor inputs, we plug into the production function

$$
\begin{gathered}
y_{1}=\ell_{1}^{1 / 2} k_{1}^{1 / 2} \\
2.5298=\ell_{1}^{1 / 2}(1)^{1 / 2} \\
\ell_{1}=32 / 5=6.4000 \\
\ell_{2}=32-6.4000=25.6000 .
\end{gathered}
$$

To obtain goods prices and factor prices, we set $\hat{w}=1$ (numeraire) and then plug into the profit maximization conditions,

$$
\begin{gathered}
1=p_{1}(1 / 2)(6.4)^{1 / 2}(1)^{1 / 2} \Rightarrow p_{1}=5.0596, p_{2}=5.0596 \\
r=p_{1}(1 / 2)(6.4)^{1 / 2}(1)^{-1 / 2}=5.0596(1 / 2)(6.4)^{1 / 2}=6.4000 \\
q=p_{2}(1 / 2)(25.6)^{1 / 2}(4)^{-1 / 2}=5.0596(1 / 2)(25.6)^{1 / 2}(4)^{-1 / 2}=6.4000 .
\end{gathered}
$$

To obtain consumption levels, we plug into the demand functions,

$$
\begin{aligned}
& \hat{c}_{1}=\frac{\hat{r} \bar{k}+\hat{q} \bar{t}+\hat{w} \bar{\ell}}{2 \hat{p}_{1}}=6.3246 \\
& \hat{c}_{2}=\frac{\hat{r} \bar{k}+\hat{q} \bar{t}+\hat{w} \bar{\ell}}{2 \hat{p}_{2}}=6.3246 .
\end{aligned}
$$

Small Open Economy Trade Equilibrium

	\hat{p}_{j}	\hat{c}_{j}	\hat{y}_{j}	\hat{k}_{j}	\hat{t}_{j}	$\hat{\ell}_{j}$	\hat{r}	\hat{q}	\hat{w}
good 1	5.0596	6.3246	2.5298	1	0	6.4	6.4	6.4	1
good 2	5.0596	6.3246	10.1193	0	4	25.6			

$$
u\left(\hat{c}_{1}, \hat{c}_{2}\right)=\log 6.3246+\log 6.3246=3.6889
$$

Real income index $e^{1 / 2\left(u\left(\hat{c}_{1}, \hat{c}_{2}\right)\right)}=\hat{c}_{1}^{1 / 2} \hat{c}_{2}^{1 / 2}=6.3246^{1 / 2} 6.3246^{1 / 2}=6.3246$. Real income increases by a factor of $6.3246 / 5.6569=1.1180$, almost 12 percent.

Who would be opposed to this?

Let us suppose that capitalists, landowners, and workers are separate people.
In autarky, the consumption of capitalists is $\hat{c}_{1}^{K}=\frac{\hat{r} \bar{k}}{2 \hat{p}_{1}}=\frac{16 \cdot 1}{2 \cdot 8}=1, \hat{c}_{2}^{K}=\frac{\hat{r} \bar{k}}{2 \hat{p}_{2}}=\frac{16 \cdot 1}{2 \cdot 4}=2$.
The consumption of landowners is $\hat{c}_{1}^{T}=\frac{\hat{q} \bar{t}}{2 \hat{p}_{1}}=\frac{4 \cdot 4}{2 \cdot 8}=1, \quad \hat{c}_{2}^{T}=\frac{\hat{q} \bar{t}}{2 \hat{p}_{2}}=\frac{4 \cdot 4}{2 \cdot 4}=2$.
The consumption of workers is $\hat{c}_{1}^{L}=\frac{\hat{w} \bar{\ell}}{2 \hat{p}_{1}}=\frac{1 \cdot 32}{2 \cdot 8}=2, \hat{c}_{2}^{L}=\frac{\hat{w} \bar{\ell}}{2 \hat{p}_{2}}=\frac{1 \cdot 32}{2 \cdot 4}=4$.
In trade,

$$
\begin{aligned}
& \hat{c}_{1}^{K}=\hat{c}_{2}^{K}=\frac{6.4 \cdot 1}{2 \cdot 5.0596}=0.6325 \\
& \hat{c}_{1}^{T}=\hat{c}_{2}^{T}=\frac{6.4 \cdot 4}{2 \cdot 5.0596}=2.5298 \\
& \hat{c}_{1}^{L}=\hat{c}_{2}^{L}=\frac{1 \cdot 32}{2 \cdot 5.0596}=3.1623 .
\end{aligned}
$$

The real income of capitalists goes from $(1)^{1 / 2}(2)^{1 / 2}=1.4142$ to $(0.6325)^{1 / 2}(0.6325)^{1 / 2}=0.6325$, an decrease of 55 percent.

The real income of landowners goes from $(1)^{1 / 2}(2)^{1 / 2}=1.4142$ to $(2.5298)^{1 / 2}(2.5298)^{1 / 2}$ $=2.5298$, an increase of 79 percent.

The real income of workers goes from $(2)^{1 / 2}(4)^{1 / 2}=2.8284$ to $(3.1623)^{1 / 2}(3.1623)^{1 / 2}=3.1623$, an increase of 12 percent.

Equilibrium in a World Trade Model

We define an equilibrium for a world economy with m countries. We consider only the case of a world with identical, fixed proportions production functions in each country. The definition for a world with identical, specific factors production technologies should be obvious.

Production technology:

$$
\begin{gathered}
y_{1}=\min \left[k_{1}, \ell_{1} / 2\right]=k_{1}=\ell_{1} / 2 \\
y_{2}=\min \left[k_{2} / 2, \ell_{2}\right]=k_{2} / 2=\ell_{2} .
\end{gathered}
$$

Endowments:

$$
\bar{k}^{i}, \bar{\ell}^{i} \text { in each country, } i=1,2, \ldots, m
$$

Utility of the representative consumer/worker in country $i, i=1,2, \ldots, m$:

$$
u\left(c_{1}^{i}, c_{2}^{i}\right)=\log c_{1}^{i}+\log c_{2}^{i} .
$$

A trade equilibrium is a set of

 goods prices \hat{p}_{1}, \hat{p}_{2},factor prices $\hat{r}^{i}, \hat{w}^{i}, i=1,2, \ldots, m$,
consumption plans $\hat{c}_{1}^{i}, \hat{c}_{2}^{i}, i=1,2, \ldots, m$, and production plans $\hat{y}_{1}^{i}, \hat{y}_{2}^{i}, \hat{k}_{1}^{i}, \hat{k}_{2}^{i}, \hat{\ell}_{1}^{i}, \hat{\ell}_{2}^{i}, i=1,2, \ldots, m$, such that

- Given $\hat{p}_{1}, \hat{p}_{2}, \hat{r}^{i}, \hat{w}^{i}$, the consumer in country i chooses $\hat{c}_{1}^{i}, \hat{c}_{2}^{i}$ to solve

$$
\max \log c_{1}^{i}+\log c_{2}^{i}
$$

s. t. $\hat{p}_{1} c_{1}^{i}+\hat{p}_{2} c_{2}^{i}=\hat{r}^{i} \bar{k}^{i}+\hat{w}^{i} \bar{\ell}^{i}$.

- $\hat{p}_{1}-\hat{r}^{i}-2 \hat{w}^{i} \leq 0$, $=0$ if $\hat{y}_{1}^{i}>0$,

$$
\hat{p}_{2}-2 \hat{r}^{i}-\hat{w}^{i} \leq 0,=0 \text { if } \hat{y}_{2}^{i}>0 .
$$

- $\hat{y}_{1}^{i}=\min \left[\hat{k_{1}^{i}}, \hat{\ell}_{1}^{i} / 2\right]$,

$$
\hat{y}_{2}^{i}=\min \left[\hat{k}_{2}^{i} / 2, \hat{\ell}_{2}^{i}\right] .
$$

- $\hat{c}_{1}^{1}+\hat{c}_{1}^{2}+\ldots+\hat{c}_{1}^{m}=\hat{y}_{1}^{1}+\hat{y}_{1}^{2}+\ldots+\hat{y}_{1}^{m}$,

$$
\hat{c}_{2}^{1}+\hat{c}_{2}^{2}+\ldots+\hat{c}_{2}^{m}=\hat{y}_{2}^{1}+\hat{y}_{2}^{2}+\ldots+\hat{y}_{2}^{m} .
$$

- $\hat{k}_{1}^{i}+\hat{k}_{2}^{i} \leq \bar{k}^{i}, i=1,2, \ldots, m$, $\hat{\ell}_{1}^{i}+\hat{\ell}_{2}^{i} \leq \bar{\ell}^{i}, i=1,2, \ldots, m$.

Points to notice:

1. We usually consider the case where there are two countries, $m=2$, in examples.
2. If there are two countries, i and j, that both produce both of the two goods,

$$
\hat{y}_{1}^{i}>0, \hat{y}_{2}^{i}>0 \text { and } \hat{y}_{1}^{j}>0, \hat{y}_{2}^{j}>0,
$$

then the profit maximization conditions imply that the factor prices in the two countries are equal, prices $\hat{r}^{i}=\hat{r}^{j}, \hat{w}^{i}=\hat{w}^{j}$.
3. If $\hat{y}_{j}^{i}-\hat{c}_{j}^{i}$ is positive, then $\hat{y}_{j}^{i}-\hat{c}_{j}^{i}$ is the amount of good j exported by country i. If $\hat{y}_{j}^{i}-\hat{c}_{j}^{i}$ is negative, then $\hat{c}_{j}^{i}-\hat{y}_{j}^{i}$ is the amount of good j imported by country i.

A Note on Real Income

We calculate real income using a monotonic transformation of the utility function that is homogenous of degree one:

$$
r\left(c_{1}, c_{2}\right)=e^{(1 / 2)\left(\log c_{1}+\log c_{2}\right)}=c_{1}^{1 / 2} c_{2}^{1 / 2} .
$$

The monotonic transformation $v(u)=e^{(1 / 2) u}$ ensures that $c_{1}^{1 / 2} c_{2}^{1 / 2}$ represents the same consumer preferences (that is, has the same indifference curves) as $\log c_{1}+\log c_{2}$. It is easy to verify that $r\left(c_{1}, c_{2}\right)=c_{1}^{1 / 2} c_{2}^{1 / 2}$ is homogenous of degree one:

$$
r\left(\theta c_{1}, \theta c_{2}\right)=\left(\theta c_{1}\right)^{1 / 2}\left(\theta c_{2}\right)^{1 / 2}=\theta c_{1}^{1 / 2} c_{2}^{1 / 2}=\theta r\left(c_{1}, c_{2}\right)
$$

This means that we can meaningfully talk about percent changes in real income.
Our concept of changes in real income is what is traditionally known as the equivalent variation: In measuring the change in real income between situation 1 and situation 2 , we ask by how much would we need to change income in situation 1 , keeping prices fixed at situation 1 prices, to make a consumer indifferent between his or her consumption bundle in situation 1 and his or her consumption bundle in situation 2.

In the autarky equilibrium of our economy in the fixed proportions model real income is

$$
r(4,6)=4^{1 / 2} 6^{1 / 2}=4.8990
$$

In the trade equilibrium, real income rises to

$$
r(5,5)=5^{1 / 2} 5^{1 / 2}=5.0000
$$

The increase in real income is 2.06 percent.
Let us verify that this is indeed the equivalent variation: In autarky, prices are $\hat{p}_{1}=9 / 4$, $\hat{p}_{1}=6 / 4$, and income is $\hat{r} \bar{k}+\hat{w} \bar{\ell}=(1 / 4) 16+(1) 14=18$. Suppose instead, income were 2.06 percent higher,

$$
(1.0206) 18=18.3711 .
$$

Then consumer demands would be

$$
\begin{aligned}
& \hat{c}_{1}=\frac{18.3711}{2 \hat{p}_{1}}=\frac{18.3711}{2(9 / 4)}=4.0825 \\
& \hat{c}_{2}=\frac{18.3711}{2 \hat{p}_{2}}=\frac{18.3711}{2(6 / 4)}=6.1237 .
\end{aligned}
$$

Notice that, as we claimed, $r(5,5)=r(4.0825,6.1237)=5.0000$ (and that, of course, $\log 5+\log 5=\log 4.0825+\log 6.1237=3.2189)$.

