Calculating \bar{b} :
Utility of repaying even if bankers do not lend:

$$
u((1-\theta) \bar{y}, \theta \bar{y}-B)+\frac{\beta u((1-\theta) \bar{y}, \theta \bar{y})}{1-\beta}
$$

Utility of defaulting if bankers do not lend:

$$
\frac{u((1-\theta) Z \bar{y}, \theta Z \bar{y})}{1-\beta} .
$$

\bar{b} is determined by

$$
u((1-\theta) \bar{y}, \theta \bar{y}-\bar{b})+\frac{\beta u((1-\theta) \bar{y}, \theta \bar{y})}{1-\beta}=\frac{u((1-\theta) Z \bar{y}, \theta Z \bar{y})}{1-\beta}
$$

$$
\begin{aligned}
& \log ((1-\theta) \bar{y})+\gamma \log (\theta \bar{y}-\bar{b})+\frac{\beta \log ((1-\theta) \bar{y}+\beta \gamma \log (\theta \bar{y})}{1-\beta} \\
& \quad=\frac{\log ((1-\theta) Z \bar{y})+\beta \gamma \log (\theta Z \bar{y})}{1-\beta}
\end{aligned}
$$

This has a simple analytical solution for \bar{b}.

It is easiest to work with a grid of debt levels $[0, \tilde{B}]$, where \tilde{B} is a number large enough so that the government would always want to default if it had debt equal to \tilde{B}. In the example, $\tilde{B}=150$ is large enough.

For every grid point $B \in(\bar{b}, \tilde{B}]$, we can calculate the expected utility of the government if it reduces decides the debt to \bar{b} in T periods,
$T=1,2, \ldots, 6$. First-order conditions imply that $g_{t}=g^{T}(B)$ is constant as long as $B>\bar{b}$. We can solve for $g^{T}(B)$:

$$
\begin{gathered}
g^{1}(B)=\theta \bar{y}-B+\beta \bar{b} \\
g^{T}(B)=\theta \bar{y}-\frac{1-\beta(1-\pi)}{1-(\beta(1-\pi))^{T}}\left(B-(\beta(1-\pi))^{T-1} \beta \bar{b}\right) .
\end{gathered}
$$

Compute $V^{T}(B)$:

$$
\begin{gathered}
V^{1}(B)=u\left((1-\theta) \bar{y}, g^{1}(B)\right) \\
+\frac{\beta u((1-\theta) \bar{y}, \theta \bar{y}-(1-\beta) \bar{b})}{1-\beta} \\
V^{T}(B)=\frac{1-(\beta(1-\pi))^{T}}{1+\beta(1-\pi)} u\left((1-\theta) \bar{y}, g^{T}(B)\right) \\
+\frac{1-(\beta(1-\pi))^{T-1}}{1+\beta(1-\pi)} \frac{\beta \pi u((1-\theta) Z \bar{y}, \theta Z \bar{y})}{1-\beta} \\
+(\beta(1-\pi))^{T-2} \frac{\beta u((1-\theta) \bar{y}, \theta \bar{y}-(1-\beta) \bar{b})}{1-\beta}
\end{gathered}
$$

For every $B \in(\bar{b}, \tilde{B}]$, we can calculate the optimal number of periods $T(B)$ to run down the debt finding what T maximizes $\left[V^{1}(B), V^{2}(B), \ldots, V^{6}(B)\right]$. That is,

$$
\begin{gathered}
T(B)=\arg \max _{T} V^{T}(B) \\
\tilde{V}(B)=\max _{T} V^{T}(B) .
\end{gathered}
$$

To find \bar{B}, we solve

$$
\begin{aligned}
& \max \left[V^{1}(\bar{B}), V^{2}(\bar{B}), \ldots, V^{6}(\bar{B})\right] \\
& \quad=u((1-\theta) Z \overline{Z y}, \theta Z \bar{Y}+\beta(1-\pi) \bar{B})+\frac{\beta u((1-\theta) Z \bar{y}, \theta Z \bar{y})}{1-\beta} .
\end{aligned}
$$

Now

$$
V(B)= \begin{cases}\tilde{V}(B) & \text { if } B \leq \bar{B} \\ u((1-\theta) Z \bar{y}, \theta Z \bar{y})+\frac{\beta u((1-\theta) Z \bar{y}, \theta Z \bar{y})}{1-\beta} & \text { if } B>\bar{B} .\end{cases}
$$

Notice that, if $B>\bar{B}$, the value function is not

$$
u((1-\theta) Z \bar{y}, \theta Z \bar{y}+\beta(1-\pi) \bar{B})+\frac{\beta u((1-\theta) Z \bar{y}, \theta Z \bar{y})}{1-\beta}
$$

because the bankers realize that, if they lend to the government, the government would default. Therefore they do not lend. Consequently, $V(B)$ is discontinuous at \bar{B}.

$V(B)$

$B^{\prime}(B)$

