## U.S.-CANADA FTA IN THE MONOPOLISTIC COMPETITION MODEL

Set $w=1$ as numeraire.
We know that

$$
\begin{gathered}
p_{0}=w=1 \\
y_{0}=\frac{w \bar{\ell}}{2 p_{0}}=\frac{\bar{\ell}}{2 p_{0}} \\
y_{i}=\bar{y}=\frac{\rho(n-1) \bar{\ell}}{2 n^{2} b} \\
p_{i}=\bar{p}=\frac{\bar{\ell}^{\rho} \bar{y}^{\rho-1}}{2 n \bar{y}^{\rho}}=\frac{\bar{\ell}}{2 n \bar{y}}=\frac{b n}{\rho(n-1)} . \\
n=\frac{(1-\rho) \bar{\ell}+\sqrt{(1-\rho)^{2} \bar{\ell}^{2}+4(\rho \bar{\ell})(2 f)}}{4 f} .
\end{gathered}
$$

## Autarky equilibrium in Canada

$$
\begin{gathered}
b=1, f=2, \rho=1 / 2, \bar{\ell}=18 \\
n=\frac{9+\sqrt{(9)^{2}+4(9)(4)}}{8} \\
n=3 \\
\bar{y}=1, \bar{p}=3 \\
p_{0}=w=1, y_{0}=9
\end{gathered}
$$

Utility:

$$
\log 9+2 \log \left(3(1)^{1 / 2}\right)=4.3944
$$

Homogenous of degree one representation of utility (a real income index):

$$
\exp \left[(1 / 2)\left(\log 9+2 \log \left(3(1)^{1 / 2}\right)\right]=\exp [(1 / 2)(4.3944)]=9.00 .\right.
$$

## Autarky equilibrium in the United States

$$
\begin{gathered}
b=1, f=2, \rho=1 / 2, \bar{\ell}=180 \\
n=\frac{90+\sqrt{(90)^{2}+4(90)(4)}}{8} \\
n=23.4591 \\
\bar{y}=1.8365, \bar{p}=2.0891 \\
p_{0}=w=1, y_{0}=90
\end{gathered}
$$

Utility:

$$
\log 90+2 \log \left(23.4591(1.8365)^{1 / 2}\right)=11.4182
$$

Homogenous of degree one representation of utility (a real income index):

$$
\exp \left[(1 / 2)\left(\log 90+2 \log \left(23.4591(1.8365)^{1 / 2}\right)\right]=\exp [(1 / 2)(13.2418)]=301.60\right.
$$

Autarky equilibrium

|  | $\hat{n}^{i}$ | $\hat{p}_{0}^{i}$ | $\bar{p}$ | $\hat{w}^{i}$ | $\hat{c}_{0}^{i}$ | $\bar{c}^{i}$ | $\hat{y}_{0}^{i}$ | $\hat{\ell}_{0}^{i}$ | $\bar{y}^{i}$ | $\bar{\ell}^{i}$ | $e^{\hat{u} / 2}$ |
| :--- | ---: | ---: | :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Canada | 3.0000 | 1.0 | 3.0000 | 1.0 | 9.0 | 1.0000 | 9.0 | 9.0 | 1.0000 | 3.0000 | 9.00 |
| U.S. | 23.4591 | 1.0 | 2.0891 | 1.0 | 90.0 | 1.8365 | 90.0 | 90.0 | 1.8365 | 3.8365 | 301.60 |

## Free trade equilibrium

First calculate the equilibrium for the North American economy with $\bar{\ell}=\bar{\ell}^{C A}+\bar{\ell}^{U S}=198$ :

$$
\begin{gathered}
n=\frac{99+\sqrt{(99)^{2}+4(99)(4)}}{8} \\
n=25.7126 \\
\bar{y}=1.8503, \bar{p}=2.0809 \\
p_{0}=w=1, y_{0}=99
\end{gathered}
$$

To calculate consumption of each variety in each country, we just divide the world production of the variety $\bar{y}$ proportionally. In Canada, for example,

$$
\bar{c}^{C A}=\frac{\bar{\ell}^{C A}}{\bar{\ell}^{C A}+\bar{\ell}^{C A}} \bar{y}=\frac{18}{198} 1.8503=0.1682 .
$$

We also divide the production and the consumption of the agricultural good proportionally.

## Free trade equilibrium

|  | $\hat{n}^{i}$ | $\hat{p}_{0}^{i}$ | $\bar{p}$ | $\hat{w}^{i}$ | $\hat{c}_{0}^{i}$ | $\bar{c}^{i}$ | $\hat{y}_{0}^{i}$ | $\hat{\ell}_{0}^{i}$ | $\bar{y}^{i}$ | $\bar{\ell}^{i}$ | $e^{\hat{u} / 2}$ |
| :--- | ---: | ---: | :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Canada | 2.3375 | 1.0 | 2.0809 | 1.0 | 9.0 | 0.1682 | 9.0 | 9.0 | 1.8503 | 3.8503 | 33.06 |
| U.S. | 23.3751 | 1.0 | 2.0809 | 1.0 | 90.0 | 1.6821 | 90.0 | 90.0 | 1.8503 | 3.8503 | 330.57 |

Notice that Canada stands to gain far more from trade than does the United States:

In Canada real income increases by 267 percent $(33.06 / 9.00=3.67)$.
In the United States real income increases by 10 percent $(330.57 / 301.60=1.10)$.

