Problem Set \#2

1. Consider the data for Spain in the attached Excel file. Use the data for real investment to construct a series for the capital stock following the rule

$$
\begin{gathered}
K_{t+1}=(1-\delta) K_{t}+I_{t} \\
K_{1954}=\bar{K}_{1954} .
\end{gathered}
$$

Choose δ so that

$$
\left(\sum_{t=1970}^{2000} \delta K_{t} / Y_{t}\right) / 31=\delta\left(\sum_{t=1970}^{2000} K_{t} / Y_{t}\right) / 31=0.12895034
$$

and choose \bar{K}_{1954} so that

$$
K_{1954} / Y_{1954}=\left(\sum_{t=1955}^{1964} K_{t} / Y_{t}\right) / 10
$$

2. Consider a model with an infinitely-lived, representative consumer. The production function is $Y_{t}=A_{t} K_{t}^{\alpha} N_{t}^{1-\alpha}$. The consumer solves the problem

$$
\begin{gathered}
\max \sum_{t=t_{0}}^{\infty} \beta^{t}\left[\gamma \log C_{t}+(1-\gamma) \log \left(N_{t} \bar{h}-L_{t}\right)\right] \\
\text { s.t. }\left(1+\tau_{t}^{c}\right) C_{t}+K_{t+1}-K_{t} \\
=\left(1-\tau_{t}^{\ell}\right) w_{t} L_{t}+\left(1-\tau_{t}^{k}\right)\left(r_{t}-\delta\right) K_{t}+T_{t} . \\
K_{t_{0}}=\bar{K}_{t_{0}}
\end{gathered}
$$

a) Using the series for the capital stock from question 1 and the data in the attached Excel file, calculate a series for total factor productivity A_{t}. Choose $\alpha=0.31149775$.
Be careful: In this model GDP is

$$
G D P_{t}=\left(1+\tau_{t}^{c}\right) C_{t}+I_{t}=r_{t} K_{t}+w_{t} L_{t}+\tau_{t}^{c} C_{t}=A_{t} K_{t}^{\alpha} L_{t}^{1-\alpha}+\tau_{t}^{c} C_{t}
$$

b) Using the data in the attached Excel file for the period 1965-1974 and the first order conditions from the consumer's problem, estimate the values of the parameters β and γ.
c) Using the MATLAB programs in the attached zip file, calculate the equilibrium of this model for the period 1970-2030. Assume that the rate of population growth over the period 2000-2030 is constant at its average value 1970-2000, that the rate of increase of TFP over the period 2000-2030 is constant at its average value 1970-2000, and that tax
rates over the period 2000-2030 are constant at their 2000 values. Assume that by 2030, the equilibrium has converged to its balanced growth path.
3. Repeat the analysis of question 2 where all tax rates stay constant at their average values 1965-1975. Be careful: The parameters need to be recalibrated.
4. Repeat the analysis of question 2 where tax rates change but where the rate of increase of TFP stays constant at its average value 1965-1975.

