TIMOTHY J. KEHOE
Department of Economics, Uaiversity of Minnesotz, Minneapolis, Minnesota 55455

Computation and Multiplicity of Economic
Equilibria

1. INTRODUCTION

The principal model in ecoromic theory is the Walrasian model of general economic
equilibrium. In it, consumers choose to demend and supply goocds to maximize
a utility function subject 1o the constraint tkat the value of wkat they dszmand
must equal the value of what they supply. Producers choose to demand and supply
goods to maximize profits subject to the restrictions of a production technology. An
equilibrium of this model is a vector of prices, one for each good, which the agents
all take as given in solving their maximization problems, such that demand is equal
to supply for every good. Economists use this type of model to do comparative
staties analysis: they first compute a benchmark equilibrium for the model; they
then change a parameter of the model such as a tax rate; finally they compare the
new equilibrium with the benchmark. Large-scale empirical models are often used
to do policy analysis (see, for example, Kehoe and Serra-Puche, 1983, and Shoven
and Whalley, 1984).

In this paper we study several simple, highly stylized versions of the Walrasian
equilibrium model. (Debrex, 1959; Arrow and Hahn, 1971; and Mas-Colell, 1985 are
good references on the mashematics of general equilbrium theory) Qur emphasis
is on the formal properties of these models tkat make ihem different from many
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models in the physical sciences, rataer than on the economif:s of the mod?ls. I.n par-
ticular, we discuss the problems involved in proving the exlstgnge_ of eqmlibl"la'a_nd
of computing equilibria. We give special attention to the possibility of multiplicity
of equilibria.

2 EXISTENCE OF EQUILIBRIUM AND BROUWER’S FIXED-
POINT THEOREM

We begin with the simplest possible model, zn exchange economy in which the ox_)ly
economic activity is exchange of goods among consumers. We dlsi:u:.ss models with
production later. There are m oonsumers'and n goods. Consurner i, i = 1,2,...,m,
is endowed with nonnegative amounts, w' = (w}, w5, . -, wh ), of gqods. l:.Ie also .has
a ulility function u; : R} — R that is strictly concave and monotonlcef.ﬂy mcreas:ng.
When faced by the price vector g € R}, he chooses the constmption plan z .to
maximnize u;(z) subject to the budget consiraint p-3z < p-w' and nonnegativity
consiraint z > 0. ‘ ) ) .

The solution to this problem, the consumer’s demand function z* (p), is contin-
uous (at least for strictly positive prices); is homogeneous of d.egree zefo, z{Ap) =
zi(p) for all A > 0 and 2Il p; and satisfies the budget constraint, p- z'{p) = p- w
for all p. The eggregate excess demand funclion,

o)=Y (@) - v,

therefore is continuous, is homogeneous of degree zero, and satisfies p - () = 0
for all p. This final property is known as Wairas’ law and is as close as economices
comes to having a law cf conservation. '

Our price domain is R \{0}, the set of all nonnegat.ive price vectors except the
origin. There is often a technical problem with contir-xmty of excess demand w}}en
some prices approach zero. Some, but not necessarily z‘).ll, of the corresponding
excess demands might then approach infinity. There are simple ways to get around
this problem, however (see, for example, Kehoe, 1982). Since nothmg. of co.nce_ptua.i
significance is involved, we shall ignore ary problems posed by discontinuity of
demand due to zero prices. . , ‘

An equilibrium is a price vector p for which f(p) < 0. Notice that Walras’ law
implies that f;(5) < 0 only if §; = 0; in cther words, we allow supply to exceed
demand for a good only if it is free. Walras (1874) himself had two arguments
for the existence of equilibrium: first, he counted equations and unknowns in the
definition of equilibrium and verified that they are equal. Second, hf:_ pr'oposed a
dynamic adjustment process that would bring the system into equilibrium f'rom
an arbitrary starting price vector. Although each of these approaches provided
important insights, neither is correct.
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The system f(§) = 0 involves n equations and » unknowns. Walras recognized
that there are two offsetting complications: because of Walras’ law, ore equation
is redundant, but because of homogeneity we can impose a price normalization. In
other words, we can either eliminate a variable by choosing a numeraire, a good in
whose terms all values are measured, by setting, for example, §; = 1, or we can
add an equation, such as 3, pi = 1. Consequently, we are left with a system with
the same number of equations and unknowns. Although this clearly does not, as
Walras seems to have thought it does, assure us of the existence of a solution, it
does, as we shall see, tell us something about local uniqueness of equilibria.

The second approach to existence folowed by Walras was a disequilibrium
adjestment process that he called {d@ionnement, or groping. In it, an auctioneer
adjests prices systematically by raising the prices of goods in excess demand and
lowering those of goods in excess supply. Samuelscn (1941, 1942) formalized this
process as the system of differential equations

%~ ().

(Walras himself thought of titonnement more as a nonlinear Gauss-Seidel method )

This approach was popular in economics for a time, and many economists
seatched for conditions under which it leads to converzence (see, for example, Arrow,
Block, and Hurwicz, 1959}. Thete are problems in giving the process 2 real-time
interpretation, however, and, in any case, it became less popular after Scarf (196()
constructed en example in which, unless p(0) = #, the unique equilibrium of his
example, the solution converges to a limit cycle.

In a series of papers of increasing generality, Sonnenschein (1973), Maniel (1974),
and Debreu (1974) proved that the excess demand function f is arbitrary except for
continuity, homogeneity, and Walras’ law. Specifically, Debreu proved that for any
function f that satisfies these properties, there are n consumers with strictly con-
cave, monotonically increasing utility functions whose individual excess demands
sum to f. To see that this implies that the titonnement process is arbitrary, let
us use homogeneity to normalize prices to lie on the intersection of the unit sphere
and the positive orthant, 3 7, p} = 1, p; > 0. Walras’ law implies that f(p) defines
a vector field on the sphere:

;:i, (;ps(t)z) =23 pilt) %ﬂ =23 pi(t)fi(p(1) = 0.

Consequently, continuity, homogeneity, and Walras’ law imply no more than that
the titonnement process defines a continucus vector field on the sphete. The so-
lution for an initial condition p(0) = po is fairly arbitrary. With three goods, for
example, there can be astable limit cycle, as in Scarf’s (1960} example. See Figure 1.
With four or more goods, the tatonnement process can generate chaotic dynamics.
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Py

Py FIGURE 1 Scarf's example.

Although Wald (1936) had proved the existence of equilibria' for two special
models eatlier, Arrow and Debreu (1954) and McKenzie (1954) reahzefl that the ex-
istence of equilibria in more general models could be demonstrated using Brouwer’s
fized-point theorem o some variant. Brouwer’s theorem. says that a continuous map
g: S — S of some nonempty, compact, convex set S into itself leaves some point

d, that is, & = g(#) for some £ € S.
fxe I’{enormalizingg;()ri)ces, we can use the simplex S = {p €R"|e-p=1,p> 0}
as our price domain. (Here ¢ = (1,....1}.) Wa.lras’_:f.d_]}lstment process su.ggests
9(p) = p+ f(p) as a map whose fixed points are equllxb:mm. The problem is th:.ﬂ'.
o(p) is not necessarily in S for all p € S. For any ¢ € R", let #(g) be that point in
S that is closest to ¢ in euclidzan distance. Define

o(p) = x(p + F(p))-

Since S is convex, r and, therefore, g are continuous. . ]
We claim that () < 0 if and only if p = g(p). To prove this, notice g(p) solves

the problem
min(1/2) |ls — p — SR,

sk.e-g=1
g20
if and only if i
g-p— flp)+Arez20
g (g—p—fp)+2e) =0
for some Lagrange multiplier A. Suppose that § = g{p). Walras’ law implies that
0=p-f() = Ap-e = . Consequently, f(p) < 0. To prove the converse that
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f(P) < € implies ¢(p) = p, merely requires setling g = p and A = 0 in conditions
that define g(p).

The relationship between the existence thecrem and Brouwer’s theorem is very
close: as we have jusi argued, the existence of equilibrivm follows quickly from
Brouwer's theorem. Furthermore, as Uzawa (1962) first noticed, Brouwer’s theorem
follows quickly from the existence thecrem. Suppose that g : S — S is continuous.
We can construct an excess demand function f that satisfies continuity, homogene-
ity, and Walras’ law and is such that $ = g(p) if and only if F(P) < 0. Since we
know that aggregate excess demand is arbitrary except for these properties, it fol-
lows tha, if we know that an equilibrium exists for every economy, then we know
Brouwer’s theorem. Consequently, extept for special cases, Brouwer’s theorsm or
its equivalent is necessary for proving the existence of equilibrium.

An obvious candidate for the excess demand function based on gis f(p) =
g(p) — p; the problems are that it does not satisfy homogeneity or Walras’ law.
Homogeneity is trivial, however: if we have a function f: S — R® we can define
f on all RI\{0} as f(m(p)). where, of course, 7(p) = (1/e - p)p. Let us, therefore,
without loss of generality, restrict ourselves to the price domain S. To make f obey
Walras” law, we define A(p) = p- g(p)/p - p and set

Fip) = 9(p) — Moip.

Suppose now that f() < 0. This implies that, in fact, J(#) = 0 since, by
Walras’ law, f;(f) < 0 would imply p; = 0, in which case f;(5] = g;() > 0.
That f(p) = 0, however, implies that g(p) = A(p)p. Since e - g(p) = e - p = 1, this
implies that A(P) = 1 and, therefore, g(5) = p. The converse, that g(p) = p implies
F(8) =0, follows from - g(5)/f - p = 1.

3. ECONOMIC EQUILIBRIUM AND OPTIMIZATION

Unlike many problems in the physical sciences, the economic equilibrium problem
cannot usually be solved as an optimization problem: although an equilibrium is
the solution to an eptimization problem, finding the right optimization problem is,
in general, as difficult as finding the equilibrium itself.

Parelo (1909} first realized that the allocation of goods (2!, 22, ..., #™) associ-
ated with an equilibrium $ has a property now known as Fareio efficiency. There is
no alternative allocation (ZL,%% ..., ™) that is superior in the sense that is feasi-
ble, 371, T < Yo w' and w(FY) > w(#),i=1,2,...,m, with strict inequality
some i. In other words, there is no way to reallocate goods to make some consumer
better off that does not make another consumer worse of. The argament, due to
Arrow (1951) and Debreu (1954), is simple: suppose to the contrary, that there is
an allocation supetior to the competitive allocation. Then 5-F>p.2t =p. v
with strict inequality wherever w(T?) > u;(4%); otherwise, 3 would not maximize
utility subject to the budget constraint. Consequently, 372, 5-%* > Yo, § - wh
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Maultiplying the feasibility conditions by p, however, yields $- Y orey T2 < 53 v,

which can be rearranged as 372, p-F° < ¥, 5-w'. This contradiction shows that

there can be no allocation that is Pareto superior to the competitive allocation.
Since an equilibrium is Pareto efficient, the associated allocation solves

ma.xz ayu;(z')

i=1

m m
s.t. z::i < Zwi

i=1 i=1

>0

for some nonnegative weights «;. How do we find the right weights o;? Associ-
ated with the feasibility conditions are nonnegative Lagrange multiplers p(a) =
(p:.(a),p2(a), ..., pa(e)). It is easy to show that, for any vector &, the prices p{a)
and allocation (zl{a),z%(e),...,z™(a)) satisfy all of the conditions for an equilib-
rivm except the individual budget constraints. In the case where ¥; is contirucusly
differentiable, for example, this is simply a matter of showing that the necessary
and sufficient conditions for a solution to this problem can be rearranged into the
conditions for utility maximization. If we give each consumer a net transfer given
by the {ransfer funciion

ti(a)=p(e)- (@) = o), i=12,....m,

then p{a) is an equilibrium of the economy with transfer payments. In this econorny
budget consiraints have the form p- z* <p- uvf +#{a).

To find an equilibrium, we must find a vector & suck that #(&) = 0. The
transfer functions ¢ are continuous, homcgeneous of degree one, and sum to zero.
The functions fi(er) = —t:{ @)/, in fact, have the same formal properties as excess
demand functions. Finding an equilibrium using this approach, which is due to
Negishi (1960), involves solving a fixed-point problem in R™ rather than R"™. This
is sometimes useful if m < n, for example, if m is finite and » is infinits.

4. COMPUTATION OF EQUILIBRIA

Scarf (1967, 1973, 1982) realized that any algorithm that could be guaranteed to
compute economic equilibria would have to be able to compute fixed points of
arbitrary maps g : § — 5. He developed such an algorithm. Numerous researchers
have further timproved algorithms of this type, now known as simplicia! algorithms
(see, for example, Eaves, 1972; Todd, 1976; and van der Laan and Talman, 1980).
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In R™ a k-dimensional simpler is the convex hull of k +1 points, called vertices,

v, v?,...,v5+Y that have the property that the k vectors v — vF+!, .. ,oF —phtl
are linearly independent. The price simplex S, for example, has vertices &', 7 =
1,2,...,n, where e =1,¢; =0, j #1i. A face o7 a simplex is a lower-dimensional

simplex whose vertices are vertices of the large simplex. In R3, for example, the
point el is a zero-dimensional face of S and the convex hull of el and e? is a
one-dimersional face. A subdivision of S divides S into smaller simplices so that
every point in S is an element of some subsimplex and the intersection of any two
subsimplices 1s either empty or a face of both.

Scarf’s approach to computation of equilibria is based on a constructive proof
of a version of Sperner’s lemma: assign to every vertex of a simplicial subdivision
of S a label, an integer from the set 1,2,...,n, with the property that a veriex
v on the boundary of S receives a label i for which v; = 0. Then there exists a
subsimplex whose vertices have all of the Jabels 1,2,...,n.

Scarf’s algorithm for finding this completely labeled subsimplex is to start in
the corner of S where there is a subsimplex witk boundary vertices with all of the
labels 2,3, ...,n. Sze Figure 2. If the additional vertex of this subsimplex has the
label 1, then the algorithm stops. Otherwise, it proceeds to a new subsimplex with
all of that labels 2,3,...,n: the original subsimplex has {wo faces that have all
of these labels. One of them includes the intericr vertex. The algorithm moves to
the unique other subsimplex that shares this face. If the additional vertex of this
subsimplex has the label 1, the algorithm stops. Otherwise, it procesds, moving to

(0, 0, 1}
tor2
2 ]
N V\
3
2 ! 1
FIGURE 2 Scarf's
. ¥ 3 algorithm for finding
Zori 3 3 3 1or completely labeled
1, 0, 0) {0, 1, 0} subsimplex.
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the unique subsimplex that shares the new face and has the labels 2,3,...,n. The
algarithm cannot try to exit through a boundary face. (Thiek of what labels the
vertices of such a face must have.) Nor can it cycle. {To cycle there must be soms
subsimplex that is the first that the algorithm encounters for the second time, but
the algorithm must have previously encountered both of the subsimplices that share
the two faces of this subsimplex with the labels 2,3, ... ,n.) Since the subdivision
consists of a finite number of sudsimplices, the algerithm must terminate with a
completely labeled subsimplex.

To see the comnection of this algorithm with Brouwer’s theorem, we assign a
vertex v with a label { for which g;(v) > v;. Since e - g(v) = e - v = 1, there
must be such an i. Nolice that, since g;(v) > 0, { can be chosen such that the
labeling convention on the boundary is satisfied. A completely labeled subsimplex
has vertices ¥!, v%,...,v" such that g;{v') > vi. To prove Brouwer’s theorem, we
consider a sequence of subdivisions whose mesk, the maximum distance between
vertices in the same subsimplex, approaches zero. Associate each subdivision witk
a point in a completely labeled subsimplex. Since § is compact, this sequence of
points has a convergent subsequence. Call the limit of this subsequence p. Since g
is continuous, we know ¢{(p) > pi,i = 1,2,...,n.Since e-g(p) = -5 = 1, 9(p) =5

Scarf did not consider an infinite sequence of subdivisions, which is the noncon-
structive aspect of this proof. Instead, he worked with a subdivision with a small
mesh. Any point in a completely labeled subsimplex serves as an approximate fixed
point in the sense that |[3(z)—z|| < £ where ¢ depends on the mesh and the modulus
of continuity of g.

An alternative algorithm for computing fixed points was developed by Smale
(1976), who called it the glodal Newton’s method. It is based on Hirsch’s (1963)
proof of Brouwer’s theorem. Let § now be the disk {z € R* | z-z < 1}; like
the simplex, it is a nonempty, compact, convex set. Smale developed an algorithm
for computing fixed points of a continucusly differentiable map g : § — § that
has the property that ¢(z) = 0 for every z on the boundary of S, the sphere
85 = {z € R® | z -z = 1}. He also showed how to extend this algorithm to
situations where g is an arbitrary continuous map and S is again the simplex.

If § had no fixed points, we could define a map

h(z) = A(=)(z2 - g(x))

where A(z) = (z — g(2)}- (z ~ g())~1/2 This map would be a retraction of S into
its boundary: it would continuously map $ into 85 and be the identity on 88S.
Hizsk proved that no such map could exist, thereby proving Brouwer’s theorem.
Smale proposed starting with a regular value of x — g(z), a point T € 45 such that
I'— Dg(%) is nonsingular. Sard’s tleorem says that the set of regular values has full
measure. The algorithm then follows the solution to

Ma() (=) - 9(e0)) ==.
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FIGURE 3 Illustration of Smale’s
algorithm.

Since the path z(Z) cannot return to any other boundary point, and since it cannot
return to T because it is a regular value, it must terminate at a fixed point.
Smale shows that 2(2)is the solution to the differential equation

[1 = Do(a(t))] 22 = (o(0)) () - 0(c2)))

where p{z) = sgn(det[l — Dg(z)]}). Excep: for the ‘actor g, this is a continuous
version of Newton’s method for solving = — g{z) = 0:

Ly =Ty - [I‘— Dg(-'tt)]_l (z: — g(z)).

5. MODELS WITH PRODUCTION

We now generalize our model to include a simple production technology. It is spec-
ified by a k x n activily analysis matriz A. Columns of A represent feasible pro-
duction plans: positive entries denote outputs, negative entries inputs. The set of
technologically feasible production plans is ¥ = {z € R" |z = Ay, y > 0}. Here
v=(¥1.¥2, ..., ¥} is a vector of nonnegative ectiviiy levels.

This type of linear production technology, initially formalized by Kooprnans
(1951), but with many antecedents, is a fairly general example of a constant refurns
technology: # € Y if and only if Jz € Y for all A > (. Economists also sometimes
work with decreasing returns technologies where z € Y implies Az € Y for 0 >A>
1. In both cases they assume Y & a convex set. Decreasing returns are probably
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best thought of, both in terms of formal mathematics and ¢f econornic intuition,
however, as constant returns in an economy with additional goods that are inputs to
specific groups of procuction aciivities and are in fixed supply. Increasing relurns,
where Y is not convey, are ancther matter: they are not well handled by general
equilibrium theory, since they would cause firms to become very large relative to the
size of the economy, in which case the competitive assumption that all agents take
prices as given is untenable. We assume that A is such that there is free disposal and
that there is no cutput without any inputs. Free disposal means that,ifz €Y and
z' < z, then ¢’ € Y. This can be ensured by including vectors —¢*, i = 1,2,...,n
a5 columns in A. That —é' is a column of A means that good # can be thrown away
without using other inputs. That there is no output is without any inputs means
that ¥ N R} = {0}. This can be ensured by making sure that Ay > 0 and y >0
imply Ay = 0. An equilibrium of this model is a price vector p such that, for some
vector of aclivity levels § > 0,

f(®) = Ag,
PALO,
e-p=1

Notice that Walras® law and the first equilibrium condition imply that - f(p) =
$-(AD) = 0.In other words, the cconomic profit made by the production plan (A9,
revenue minus expenditures, is equal to zero in equilibrium. The second equilibrium
cendition implies that p-{Ag) < 0 for any y > 0. Consequently, the production plan

p + f(p)
{a|pA < 0, pre = 1} )

/

P a(p)

FIGURE 4 Continuous
funetion g : S — 5.

e A ot g
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Ajj maximizes profits at prices p. (Activities in decreasing returns technology typi-
cally earn positive economic profits; these profits ale best thought of as payments
to sector specific fixed inputs.)

The analysis of the previous sections extends easily to models with production.
To prove the existence of equilibrium, we again construct a continuous function
g:8— S. For any p € S, we define g(p) as the solution to

min(1/2)llg - 2 — FP)I?
st. gA<O
e-g=1.
Notice that, because of free disposal, g4 < 0 implies g > 0. g solves this problem if
and only if
g—p—f(p)+ Ay +Ae=0
g-(Ay)=0
for some scalar A and vector y > 0 of Lagiange multipliers. Once again Walras’ law
implies that $ is an equilibrium if and only if § = ¢(p).
Equilibria of the model with production are Pareto efficient: the associated
allocation ard production plan solves

Inaxza;u,-(z‘)
m
s.t. Zzi = Ay
i=1
. 220, y>0.

Once again there are transfer fupetions () such that #(&) = 0 is an alternative
systemn of equilibrium conditions.

6. MULTIPLICITY OF EQUILIBRIA

Ate equilibria unique” If not, are they locally unicue? Do they vary continuously
with the parameters of the economy? In recent years, economists have used the
tools differential topology to investigate these questions.

Debreu (1970) first investigated the questions of local uniqueness and conti-
nuity of equilibrium in exchangs economies with continuously differentiable excess
demand functions. He defined a reguler economy to be one for which the Jaco-
bian matrix of excess demands Df(5) with the first row and column deleted, the
(n—1) x (n — 1) matrix J, is nonsingular at every equilibrium. The first row is
deleted because of Walras’ law, the first column because of homogeneity; we are left
with a square matrix because, ss Walras had pointed out, the number of equations
equals the number of unknowns in the equilibrium ¢onditions. The inverse funetion
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theorem implies that every equilibrium of a regular economy is locally unique. Since
the set S is compact and the equilibrium conditions invclve continnous functions,
this implies that a regular economy has a finite number of equilibria.

Let us rewrite the equilibrium conditions as f(p,b) = 0 whereb € B and B is
a topological space of parameters. If f and its pariial derivatives with respect to
p are contimuous in both p and b, then the implicit function theorem implies that
equilibria vary continuously at regular economies. Furthermore, in the case where
B is the set of possible endowment vectors w', Debreu used Sard’s theorem to prove
that, for every b in an open set of full measure in B, F(,b) is a regular economy.
When B is the function space of excess demand functions with the uniform ct
topology, an open dense sei of B consists of regular economies. Consequently, if
we are willing to restrict attention to continuously differentiable excess demand
functions, a restriction thai Debreu (1972) and Mas-Colell (1974) have shown is
fairly innocuous, almost all economies, in a very precise mathematical sense, are
regular.

Dierker (1972) noticed that a fixed-point index theorem could be used to count
the number of equilibria of a regular economy. Let us define the fixed-point in-
dez of a regular equilibrium p as sgn(det[I — Dg($)]) whenever this expression is
nonzero. Dierker showed that the index can also be written as sgn(det[—J]). The
index theorem says that ¥ index(f) = +1 where the sum is over equilibria of a
regular economy. This result is depicted in Figure 5 whete n = 2, 90 = 1 — p2, and
91(p1, p2) = 1—ga(p1, p2). Here index(f) = sgn(l— 8g2/8p2) and 2 regular economy
is one where the graph of g does not become tangent to the diagonal.

Mas-Colell {1977) showed that any compact subset of S can be the equilibrium
set of some economy f. If we restrict ourselves to regular econories and » > 3,

a(p) *l

-1

+1

FIGURE 5 lllustration of the index
P thecrem.

e
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then the only restrictions placed on the number of equilibria are those given by the
index theorem. {An equilibrium with index —1 must lie between two with index
+1 if n = 2.) This implies that the number of equilibria is odd, and that there is a
unique eguilibrium if and only if index(p) = +1 at every equilibrium.

Mas-Colell (1975, 1985) and Kehce (1980, 1983) have extended the concepts of
regularity and fixed-point index to economies with production. They prove that reg-
ular production economies have the same desirable properties as regular exchange
economies and that, in a precise sense, almos: all economies are regular. Kehoe
(1980) further calculates the index of a regular equilibrium as

. R -7 B]Y
index(p) = sgn (det [—BT 0 ]) .

Here B is the submatrix of A formed by deleting the first row from A and any
column for which the corresponding activity level is zero. A regular economy, of
course, is cne for which this expression is nonzero. )

Using this formula, Kehoe (1985) has constructed a simple example of a pro-
duction economy with three equilibria. (Exchange economies with r = m = 2 that
have multiple equilibria are also easy to construct; see, for examgle, Shapley and
Shubik, [977.) This example has n = m = 4. Consumer 7 solves

4
max Z 7;: log ;!:;

ji=1
4 4
st D pieh <3 pw
i=1 i=1
P ‘2;- 2 0.

The utility parameters 'y:‘: are given in Table 1.

i TABLE 1 Utility Parameters v

i Consumer

g : Commodity 1 2 3 4

o 1 052 086 0.5 0.06
2 04 01 02 0.25
3 0.04 0.02 02975 0.0025
4 0.04 0.02 0.0025 0.6875
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TAELE 2 Endowment Parameters w}

Consumer
Commodity 1 2 3 4
1 50 (¢ 0 0
2 0 50 0 0
3 0 0 400 0
4 0 0 0 400

The endowment parameters w; are given in Table 2.

The aggregate excess demand function f has the form

Z-v&-mwz
1 tsl Z,, i=1,2,3,4.

Pj i=1

fi(p1.p2,P3,P4) =

As can easily be verified, this function satisfies continuity, homogeneity, and Walras’
law. The produstion side of the economy is given by a 4 X 6 activity analysis matrix
A -1 0 ¢ 0 6 -1

¢ -t 0 0 -1 3

0o ¢ -1 0 -4 -1

o 0 0 -1 -1 1

A=

TABLE 3 Equilibrium 1

Consumer
Commodity 1 2 3 4
1 26.000 43.000  200.000 24.000
2 20.000 5.00C 80.000 100.000
3 2.000 1.00C 119.000 1.000
4 2.000 1.00C 1.000 275.000

u; 2.948 3.306 4.947 5.204
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TABLE 4 Equilibrium 2

Consumer
Commodity 1 2 3 4
1 26.000 67.431 48.4%0 83.089
2 12.754 5.00¢C 12.368  220.771
3 8.249 6.468  119.000 14.280
4 0.578 0.453 0.07¢  275.000
u; 2.975 3.804 3.858 5.483

The parameters of this example have been chosen so that p; = ps = py =
Pa = 1/4 is an equilibrium with index{f) = ~1. Consequently, we know that there
are multiple equilibria. Two other equilibria, both with index +1, have been found
using an exhaustive computer search.

EQUILIBRIUM 1
= (0.25000,0.25000, 0.25000,0.25000)
=(0,0,0,0,52.000, 6$.000)
o' = (0.05556,0.05556, 0.44444, 0.44444)
See Table 3.

EQUILIBRIUM 2
p? = (0.15942,0.25000, 0.03865, 0.55 193)
y® = (0,0,0,0,42.701 ,81.148)
a? = (0.03105,0.04869, 0.06023, 0. 86003)
See Table 4.
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TABLE 5 Equilibrium 3

Consumer
Cemmodity 1 2 3 4
1 26.000 39.072 224362 14.499
2 22.001 5.000 98.768 66.485
3 1.783 0.810 119.00¢ 0.539
4 3.311 1.504 1.857 275.000
U; 3.002 3.317 5.04% 5.070

EQUILIBRIUM 3
p® = (0.27514,9.25000, 0.30865, 0.16621)
y® =(0,0,0,0,53.180, 65.148)
o® =(0.06363,0.05782, 0.57104, 0.50751)

See Table 5. _
Ezch of the equilibria of this example is Pareto efficient and solves a problem

of maximizing & weighted sum of utilities subject to feasibility constraints. T.he
weights a; associated with each of the equilibria are listed above. We r-.:mp_hasme
that the multiplicity of eguilibria is not due to any sort of nonconvexity in the
consumers’ ot producers’ maximization problems. Indeed, for any vectoF of weights
a;, the social planning problem that produces Pareto efficient zllocations always

has a anique solution.

7. INTERTEMPORAL MODELS

Let us now consider models in which goods are distinguished by date. Time is
discrete, and at each datet = 1,2,. .., there ate n goods. Although our models have
infinits time horizons, our results have strong implications for models with long but
finite horizons. For simplicity, we restrict attention to exchange economies: goods
cannot be stored between periods because storage is best thought of as a kind of
production. Moreover, the models are stationary: their parameters do not depend

on the date.

gt
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Consider first a model with a finite number of infinitely lived consume:s. Con-
sumer i, ¢ = 1,2,...,m, thooses a sequence of consumption vectors :r‘i,:r:é, ... to
maximize a utilty function, such as Zfil Blui(zy), where 0 < 8 < 1, subject to
ek T < Elept -w' and z; > 0. One way to formulate the equilibrium
conditions is to set supply equal to demand; thus resulis in a system of an infinite
number of equations and unknowns. Equilibria of this model are Pareto efficient,
however, and we can use the approach using transfer functions te reduce this to a
system of m — 1 equations and m — 1 unknowns. Using regularity analysis, we could
argue that almost all such economies have a finite number of equilibria (see Kehoe
and Levine, 1985).

Cansider instead a model with an infinite number of consumers, an overlapping
generations model of the type first considered by Samuelson {1958). This model has
a number of features not shared by the model with a finite number of consumers:
it may, for example, have equilibria that are not Pareto efficient. There may also
be robust examples with z continuum of equilibria.

Consider an example with a single consumer in each g_eneration born in period
t, who lives for three periods. He has utility function E:;g a4zt — 1) /b, where
b < 1, and endowment stream {w;,ws,w3). The equilibrium condition in periods
t=3,4,..., has the form

f(Pe-2, Pe-1, P, Pr41: Pey2) = 0

since it involves demands by consumers born in ¢ — 2, ¢ — 1, and ¢. In addition to
these consumers, there is an old consumer, who lives only one period, and a middle-
aged consumer, who lives iwo, alive in the first period. The equilibrium conditions
in the first two periods have the form '

filpr3p2,p3) =0
f2(P1;P2:P3,P4) =0

This model, like the one previously described, implicitly assumes perfect foresight:
consumers know, possible by solving the model themselves, what prices prevail in
the future.

The standard approach to proving the existence of, and computing, equilibria
involves truncating the time horizon at some date 7". (See, for example, Balasko,
Cass, end Shell, 1980; Auverbach, Kotlikoff, and Skinuer, 1983.) Equilibria then de-
pend on the anticipated values of pr-: and pris. To prove existence, we consider
a sequence of price sequences (p¥,r%,...) that satisfy the equilibrium conditions
in the first 7; periods. An equilibrium is the imit of a convergent subsequence
in the product topology as T; — o0. A computational procedure must stop at
a finite T, however. In computing equilibria, a standard assumption is that the
equilibriurn converges to a steady staie, a solution to the equilibrium condition in
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FIGURE 6 Thies squilibia converging to the same steady state.

periods € = 3,4, ... of the form p; = B 1p,. (Physical scientists are often surprised
that econoniists use the word equilibrium 1o describe something besides a steady
state.) In this case, the expectations would be pry: = Bpr and prya2 = Apr.
Equilibria need not, of course, converge to asteady state. Some may exhikit chaotic
trajectories (see, for example, Benhabib and Day, 1982).

Unfortunately, this type of model can have a vast multiplicity of equilibria.
Suppose, for example, we choose a = 0.5, b = —3, and (w1, w2, ws) = (3,12,1).
Then, choosing the initial old and middle-aged: consumers to ensure that the steady
state satisfies the equilibrium conditions in periods 1 and 2, we can demonstrate
that this economy has a continuum of equilibria that all converge to the steady
state where § = 0.7925 (see Kehoe and Levine, 1987, for details).

Figure 6 depicts three of these equilibria. Notice that, if we slightly perturb
the terminal conditions for pr41, pr42 in, say, T' = 20, then we produce drastically
different equilibria. This illustrates the point that a continuum of equilizria in an
infinite horizon model is typically symptomatic of sensitivity to terminal conditions
in truncated versions of the model.
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