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Summary. We characterize equilibria of general equilibrium models with
externalities and taxes as solutions to optimization problems. This characteriza-
tion is similar to Negishi’s characterization of equilibria of economies without
externalities or taxes as solutions to social planning problems. It is often useful
for computing equilibria or deriving their properties. Frequently, however, finding
the optimization problem that a particular equilibrium solves is difficult. This is
especially true in economies with multiple equilibria. In a dynamic economy with
externalities or taxes there may be a robust continuum of equilibria even if there
is a representative consumer. This indeterminacy of equilibria is closely related to
that in overlapping generations economies.

1 Introduction

In this paper we characterize equilibria of general equilibrium models with
externalities and taxes as solutions to optimization problems. Our general
framework consists of a concave maximization problem that depends on a vector
of parameters. For any vector of parameters the maximization problem has a
unique solution. A set of side conditions relates this solution to the values of the
parameters. An equilibrium is a vector of parameters that is consistent with the
solution to the maximization problem that they imply. Formally, this
characterization is similar to Negishi's (1960) characterization of equilibria of
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economies with heterogeneous consumers, but no taxes or externalities, as solutions
to social planning problems. Negishi’s characterization has an interpretation in
terms of Pareto efficiency. Although no such normative interpretation is available
in economies with externalities and taxes, this sort of characterization is often
useful for computing equilibria or deriving their properties.

This topic has been the subject of much recent research: Abel and Blanchard
(1983), Becker (1985), Danthine and Donaldson (1986), and Judd (1987) have
investigated situations in which equilibria can be characterized as solutions to
maximization problems without side constraints. Romer (1986) has applied the
general approach to economies with externalities (earlier applications to economies
with externalities include Arrow 1962, Brock 1977, and Kydland and Prescott
1977); Braun (1988), L.-J. Chang (1988), Jones and Manuelli (1988), Kehoe and
Levine (1985b), and McGrattan (1988) have applied it to economies with taxes;
and Ginsburgh and van der Heyden (1988) have applied it to economies with
institutionally fixed prices.

Another application of this idea is to characterize the steady states of dynamic
programming problems as solutions to a finite dimensional optimization problem
with side conditions. See Koopmans (1971), Hansen and Koopmans (1972),
Feinstein and Luenberger (1981), and Becker and Foias (1986). In this literature
the general approach is sometimes called the implicit programming approach
because the optimization problem to be solved depends on parameters that, in
turn, depend on solutions to the probiem.

There are, of course, formal similarities among the problems that can be solved
using this general approach. Brock (1973), for example, demonstrates the formal
equivalence between solving for the equilibrium of a single agent, static economy
with a tax distortion and solving for the steady state of a multisector optimal
growth model. This equivalence can be useful for translating results dealing with
such matters as existence and uniqueness of solutions for one sort of problem into
analogous results for another.

This paper presents a unifying framework for these various applications. It
also focuses on the difficulties that arise because the parameters of the maximization
problem are endogenously determined. In general, the parameters that satisfy the
side conditions are found by solving a fixed point problem. This fixed point problem
may have multiple solutions. Foster and Sonnenschein (1970) provide a static
example in which a tax distortion causes multiplicity of equilibria. Howitt and
McAfee (1988) and Spear (1988) provide dynamic examples in which externalities
cause multiplicity, in fact, continua of equilibria. We fit these sorts of examples
into our framework and provide a dynamic tax example with a continuum of
equilibria.

One interesting aspect of examples with multiplicity of equilibria is that they
illustrate the importance of the fixed point problem involving the parameters and
side conditions: no single strictly concave maximization problem can have multiple
equilibria as solutions. Another interesting aspect, emphasized by Spear (1988), is
that a continuum of equilibria in a dynamic economy is usually associated with
the possibility of sunspot equilibria. These are equilibria in which extrinsic
uncertainty, uncertainty that does not directly affect the utility functions, endow-
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ments, or production technology, affects the equilibrium solely because agents
expect it to. Indeed, Woodford’s (1986) method for constructing sunspot equilibria
in overlapping generations economies with continua of deterministic equilibria
can easily be extended to the examples in this paper.

A final aspect of multiplicity of equilibria in economies with externalities and
taxes that we investigate is its relation to multiplicity in overlapping generations
economies. We demonstrate that equilibria of overlapping generations economies
that solve a social planning problem, and are therefore Pareto efficient, fit into
our framework. Furthermore, there are robust examples with continua of such
equilibria. It is also possible to extend our framework to other dynamic economies
with continua of equilibria, such as Woodford’s (1988) version of the Lucas—Stokey
(1987) cash-in-advance model, although we do not do so here. (In fact, Brock
1975a has applied this type of framework to a money-in-the-utility-function model
with a continuum of equilibria.)

One aspect of multiplicity of equilibria in these economies that we do not
investigate is its relevance for applied work. The examples that we present here
are not intended to be especially realistic. Even in the overlapping generations
framework the question of the empirical relevancy of multiplicity has not been
resolved; Kehoe and Levine (1990) show that a continuum of equilibria can occur
in a robust example with plausible parameters. Laitner (1984, 1990), however,
shows that it does not occur in a large number of interesting examples.

In the next section we outline the general framework and relate it to Negishi’s
(1960) characterization of equilibria in economies without taxes or externalities.
In Sect. 3 we illustrate how this framework can be applied to models with
externalities; in Sect. 4 we do the same for economies with taxes. We demonstrate
the possibility of multiplicity of equilibria in our examples in Sect. 5. We explore
the similarities between multiplicity of equilibria in dynamic economies with
distortions and that in overlapping generations economies in Sect. 6. Finally, in
Sect. 7 we discuss the advantages and limitations of our characterization of
equilibria as solutions to optimization problems.

2 General framework

To illustrate how equilibria can be characterized as solutions to optimization
problems, what the value of this characterization is, and what its limitations are,
we study a series of simple examples. All of the examples fit into a general
framework: Equilibria solve the problem of choosing the vector x to solve

max w(x, z)
subject to
xel (2).

Here w is a distorted social welfare function; x includes individual demand and
supply vectors by consumers and firms; and z is a vector of parameters that
describes taxes and distortions and, in an economy with heterogeneous consumers,
includes weights on individual utilities. The constraint set I"(z) describes social
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feasibility. The maximum theorem says that, if w is continuous in x and z and
concave in x and if I is a convex-valued, continuous correspondence in x, then
the solution x(z) and the associated vector of Lagrange multipliers p(z) are
convex-valued correspondences that vary upper-hemi-continuously with z. If w is
strictly concave in x, then x(z) is a continuous, single-valued function; if w is
continuously differentiable, then p(z) is also a continuous, single-valued function.
Typically, p(z) can be interpreted as a vector of prices. In equilibrium the parameters
z are endogenous in that they depend on the solution to the optimization problem:
in addition to solving the above optimization problem, an equilibrium (x, p, z) must
satisfy additional conditions,

'//(x’ b, Z) =0,

where the vector y(x, p,z) has the same dimension as z. Using the optimization
problem to define x and p as functions of z, this becomes a system of equations
in z,Y(x(z), p(z),z) = 0.

To illustrate the applicability of this framework in a familiar context, consider
a pure-exchange economy with two consumers, two goods, and no externalities
or taxes. Each consumer chooses the consumption plan (¢!, ¢}) to solve

max u'(c}, )
subject to
picy +pacy < piwi + p2wh
¢;20.

Here u' is a continuously differentiable, strictly concave, and monotonically
increasing utility function, p, and p, are prices, and w and w’, are endowments.

The Kuhn—Tucker theorem says that the necessary and sufficient conditions
for a solution to this problem are that there exists a nonnegative Lagrange
multiplier 4, such that

u;(cil,ciz)—iipj<0 =0 if >0, j=12
pw +pawh — pich —pach, 20, =0 if 4,>0.

Here u is the partial derlvatlve of u' with respect to c An equ111br1um of this
model 1 1s a vector (p;,p,,cl,ci,c?,c3) such that each consumer maximizes utility
taking prices as given and

1 2 1 2 - s :
cj+cj—wj—wj§0, =0 if p;>0, j=12

Consider now the problem of choosing the allocation (cj,c},cf,c3) to solve
the social planning problem

max a,u'(c},cl) + ou*(c?,c3)

subject to

1 2 .
Cj+cj§ j—1’2

lgo

where «, and a, are nonnegative welfare weights. The necessary and sufficient
conditions for a solution to this problem are that there exist nonnegative Lagrange
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multipliers p, and p, such that
a ey, cy)—p; <0, =0 if cj.>0, i=12 j=12
wi+wl—ci—c?20, =0 if p;>0, j=1,2.

Notice if we set cj. and p; equal to their equilibrium values and set a; = 1/4;, then
an equilibrium solves this social planning problem. This is, of course, the first
welfare theorem: a competitive equilibrium is Pareto efficient. Notice too that any
Pareto efficient allocation and associated Lagrange multipliers satisfy all of the
equilibrium conditions except, possibly, the individual budget constraints. This is
the second welfare theorem: any Pareto efficient allocation can be implemented
as a competitive equilibrium with transfer payments.

Negishi’s (1960) approach to characterizing equilibria of this economy is to
consider savings functions that indicate the extent to which the allocation
associated with the weights («;,,) violates the budget constraints:

2

sy, 0p) = _Zl piley, “z)(W; - C;(ab 5))-
iz

Setting these savings functions equal to zero corresponds to the equilibrium
conditions ¥(c,p,a)=0 in the general formulation. Rather than calculating
equilibria by solving for prices such that the excess demand functions are equal
to zero, Negishi proposes solving for welfare weights such that the savings functions
are equal to zero. Indeed, saving functions have many similarities with excess
demand functions: since the savings functions are homogeneous of degree one and
sum to zero, the functions s,(«,,®,)/o; have the same formal properties as do the
excess demand functions of a (different) pure-exchange model with two goods. To
calculate an equilibrium, we need only to solve s;(a, 1 — a) = 0. This approach is
frequently easier than solving for prices such that the excess demand functions are
equal to zero, especially in economies with more goods than consumers.

3 Economies with externalities

We first apply our framework to economies with externalities. We consider two
examples, the first static, the second dynamic. Although these models are not
especially realistic, the general method extends to move complicated models and,
indeed, has been used to study growth with spillover effects. (See Romer 1988 for
a discussion of these models.) To keep the presentation simple, we retain the
representative consumer framework here and in the subsequent two sections. As
in the previous section, we could readily use the method of Negishi to incorporate
heterogeneity of consumers.

Example 1. Consider a static economy with a congestion externality. There is a
continuum of identical consumers. Let u(c, x) denote the utility function of the
representative consumer where ¢ is his consumption of the single produced good
and x is his consumption of leisure. We assume that u is continuously differentiable,
strictly concave, and monotonically increasing. (These assumptions are, of course,



48 T. J. Kehoe et al.

much stronger than they need be; they are made only to facilitate the presentation.)
The consumer is endowed with one unit of labor, which can either be consumed
as leisure or used to produce output of the consumption good.

Output of the consumption good is produced by an infinite number of identical
firms. Because there is a congestion externality, the production function for the
representative firm, f(¢, L), depends not only on the amount of labor input, Z, but
also on the average amount of labor input throughout the economy, L. We assume
that f(¢, L) is continuously differentiable and satisfies f; >0, f,, <0, and f, <0.

Faced by prices (p,w) of output and labor and by an average level of profits
from production =, the consumer chooses (c, x) to solve

max u(c, x)

subject to
pct+wxsw+mn

¢, x2>0.
The necessary and sufficient conditions for a solution to this problem are that
there exists a nonnegative Lagrange multiplier 4 such that
u (e, x)—Ap<0, =0 if ¢>0
uy(c,x) —Aw=0, =0 if x>0
w+n—pc—wx=20, =0 if 1>0.
Faced by prices (p,w) and an average level of labor input L elsewhere in the
economy, the firm chooses £ to solve
max pf(£, L) — wt.
The necessary and sufficient conditions for a solution to this problem are
pfi(£,L)—w<0, =0 if ¢£>0.

An equilibrium of this economy is a vector (p,w,n,L,c,x,7) such that the
consumer maximizes utility taking p, w, and = as given: the firm maximizes profits
taking p,w, and L as given; and

n=pf({,L)—wl
L=¢
c—f(£,L)<0, =0 if p>0
x+£—-120, =0 if w>0.

Equilibria of this economy are not, of course, Pareto efficient in general.
Consider, however, the problem of choosing ¢, x, and ¢ to solve the “Pareto”
problem

max u(c, x)
subject to
c= fl¢,L)

x+/=21
¢, x,£20.
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Notice that L is taken as a given parameter. Associated with each level of L there
is a different problem and a different associated solution. The necessary and sufficient
conditions for a solution to this problem are that there exist nonnegative Lagrange
multipliers p and w that

u(e,x)—~p=0, =0 if ¢>0
uie,x)—w=0, =0 if x>0
pfilt,Ly—w=<0, =0 if £>0
f£,Ly—c=0, =0 if p>0
l-x—£20, =0 if w>0.

If we normalize prices so that 1 =1 and set = = pf(£, L) — w/, then a solution to
this problem satisfies all of the equilibrium conditions except, possibly, £ = L.

Finding solutions to the side condition # = L is equivalent to finding equilibria
of this economy in the same way that finding solutions to the side condition
s,(a,1 — ) =0 is equivalent to finding equilibria of the exchange economy of the
previous section. For any level of average labor input L, let /(L) be the labor
demand in the solution to the above problem. The strict concavity of u and f
imply that ¢ is a continuous function of L. Since 0 £ /(L) = 1,#(L) has at least one
fixed point as in Fig. 1.

Example 2. We next consider a dynamic economy with a consumption externality.
The infinitely lived representative consumer chooses the consumption sequence
CosC1s---, tO sOlVE

max Y flu(c,)
t=0
subject to © ©
z D€ é Z Ve
t=0 t=0
¢z0
2(L)
;
0

Fig. 1. See text
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Here §,0 < < 1, is a discount factor; u(c,) is continuously differentiable, strictly
concave, and monotonically increasing; p,,p;,..., is a sequence of prices; and
Yo» V155 18 @ sequence of incomes.

The production sector has an externality in that production of the consumption
goods depends not only on inputs of capital k, and of fixed amount of labor, but
also on average consumption C,. Although this model is not intended to be realistic,
we could imagine such an externality arising because of diseases that are contagious
at low levels of consumption. We assume that the production function f(k,, C,) is
continuously differentiable and satisfies f; >0, f;, <0, and f,, > 0. Implicitly,
there is a production function F(k,,7,, C,) that exhibits constant returns in k, and
¢,. If the rate of depreciation of capital is 9,

flk, C)=F(k,,1,C)) + (1 = O)k,.

The necessary and sufficient conditions for a solution to this problem are that
there exists a nonnegative Lagrange multiplier 4 such that

p(c)—Ap, 0, =0 if ¢>0, t=0,1,...

Zyt—

t=0 t

pc, 20, =0 if 21>0

i

lim p,c,=0.
| Smdie o}

Faced by the sequences pg,p;,..., and Cg,Cy,..., the representative firm
chooses kg, ky,..., to solve

max Z (ptf(kn Ct) - ptk,+ 1) - rOkO'
t=0

The necessary and sufficient conditions for a solution are
Pofilke,Co)—1o <0, =0 if ky>0
pl+1f1(kt+1’ct+1)_pt§0’ =0 if k,,,>0, t=0,1,...
lim pk,,, =0.
t— oo

An equilibrium is a sequence of the form (p,,y,, C,, ¢, k,;} and a price of the
initial capital stock r, that satisfy the above maximization conditions for the
consumer and firm and the additional conditions

yt=ptf(kt,cy)a t=0,1,...
otk — fkaCYO, =0 if p>0, t=01,...
ko—Fo<0, =0 if ro>0
C,=c,.

The “Pareto” problem for this economy is

max i Pulc,)
t=0
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subject to

otk =fk,C) t=12,...
k0§E0
ik, 2 0.

Once again a solution to this problem satisfies all of the equilibrium conditions
except, possibly, the side conditions C, = ¢,. For any sequence Cq, C,..., the strict
concavity of u and f imply that this optimization problem has a unique solution.
Solving for an equilibrium is, however, significantly more difficult than in the
previous example: we need to find a fixed point of an infinite dimensional function,

C,=c(Co,Cy,...), t=0,1,...

It is possible to impose conditions on f that would ensure that a fixed point of
this function, and therefore an equilibrium, exists. Since the primary focus of this
paper is on the characterization, rather than the existence, of equilibria, however,
we shall not pursue this issue.

4 Economies with taxes

We next apply our framework to economies with tax distortions. Unlike the
externality examples, here we modify the utility function instead of the production
function to account for the distortion. As with the externality examples, we retain
the representative consumer framework and consider both a static and a dynamic
example.

Example 3. Consider a static economy with two consumption goods and a
representative consumer who faces an ad valorem tax on purchases of one of the
goods. He is endowed with a fixed amount of labor that he inelastically supplies
to a constant-returns production technology to produce the two consumption
goods. The production possibility set for this economy is defined by the inequalities

¢y +ac, b

CI,CZ go’

where b is proportional to the fixed labor input.
The problem faced by the consumer is

max u(c,c,)
subject to
pi(l+7)cy + Py =y
C1,¢,20.

Here, of course, ¢, and ¢, are the levels of consumption of the goods, p, and p,
the prices, y the consumer’s income, and t the ad valorem tax on purchases of the
first good. We assume that all tax revenues are rebated in lump sum form to the
representative consumer. The necessary and sufficient conditions for a solution to
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this problem are that there exists a nonnegative Lagrange multiplier 4 such that

uy(c,c)—Ap(1+1)<0, =0 if ¢, >0
u,(ci,c)—Ap, <0, =0 if ¢,>0
y—p (1 +7)c; —pc, 20, =0 if A>0.

An equilibrium of this economy is a vector (p,p,,¥,¢;,¢,) such that the

consumer maximizes utility taking p,,p,, and y as given; ¢; and c, are
technologically feasible; and

D> =4ap,
y=pi€4 +PpaCy +1P1Cy.

These final two conditions ensure that there are zero profits in production and
that all tax revenues are rebated in lump sum form to the consumer.

Consider, for a fixed nonnegative constant z, the “Pareto” problem of choosing
¢, and c, to solve

max u(c,,¢,) — z¢4
subject to
c,+ac, £b
¢, 20.

The necessary and sufficient conditions for a solution to this problem are

u(c,c)—z—p=0, =0 if ¢, >0
uy(c;,c)—ap<0, =0 if ¢,;>0
b—c,—ac, 20, =0 if p>0.

If we set p; = p, p, = ap, and 4 = 1, the a solution to this problem is an equilibrium
if the side condition z = tp(z) is satisfied.

Example 4. We next apply our framework to a dynamic economy with distortionary
taxes. Consider an economy in which the representative consumer derives utility
not only from consumption, but from investment. Capital here can be thought of
as human capital; the consumer values education not only for its enhancement of
future production possibilities but for its own sake. Kurtz (1968) provides an
alternative interpretation of a similar model. Purchases of the consumption good
are subject to an ad valorem tax. Once again, all tax revenues are rebated in lump
sum form to the consumer. Unlike the dynamic economy in the previous section
where, to keep the accounting simple, we think of the firm as holding all the capital
after period 0, consumers here purchase the investment good in one period and
then sell it to the firm in the next. The representative firm chooses the sequence
ko,k4,..., to solve the problem

max ZO (ptf(kt) - rtkr)'
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The consumer chooses the sequence (cq, Xo), (¢, X,),... to solve the problem
o)
max Y fu(c,x,)
t=0
subject to

(p(1 +1)c, +gq,x,) = Z e+ 7149%)
0 t=0

%, 2 0.

M8

t

Here x, is purchases of the investment good by the consumer in period ¢, ¢, is the
price paid, and r, , , is the price paid by the firm for the same good in period t + 1.

An equilibrium is a sequence (p,,q,,r, Vi€ X1 k) such that the consumer
maximizes utility taking p,, q,, y,, and r, as given; the firm maximizes profits taking
p, and r, as given; and

Yo =PoSf (ko) + tPoco
ve=p.f (k) —rk,+1pc,, t=12,...
¢, +ax,— f(k)<0, =0 if p>0 t=0,1,...
g, =ap, t=01,...
ko—ko=<0, =0 if ry>0
k,—x,_,=0, =0 if r,>0, t=12,...

t—1 =

The “Pareto” problem for this economy is

o0

max Y. flulc,k,, ) —zc
t=0

subject to
e, +ak, = flk) t=12,...

ko < ko
cnk ., 20.
The necessary and sufficient conditions for a solution to this problem are
Puc, bk )—2z,—p, =0, =0 if ¢>0, t=0,1,...
Pof'(ko) =1 =0, =0 if k>0
Pus(c,k, . )—ap,+p k)0, =0 if k. >0, t=0,1,...
flk)—c,—ak,, , 20, =0 if p,>0, t=0,1,...
ko—ky=0, =0 if r,>0
tlim pk,.,=0.
A solution to this problem satisfies all of the equilibrium conditions except, possibly,

the side conditions z, = tp,. Equilibria of this economy are solutions to the infinite
dimensional fixed point problem

2, =1p,(20,2¢,...), t=0,1,...
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S5 Multiplicity of equilibria

As we have indicated, extra endogenous variables and side conditions necessitate
an analysis different than that for pure optimization. In the static case, despite the
representative consumer, a finite number of multiple equilibria are possible and,
indeed, may even be Pareto ranked. In the dynamic case, the infinity of extra
variables and side conditions can lead to a robust continuum of equilibria near a
steady state; as Woodford (1986) has shown, this is necessary and sufficient for
the existence of sunspot equilibria. Here we illustrate these points in the four
examples considered in the previous two cases. We first examine the two tax
economies in some detail and then extend the analysis to the externality economies.

Example 3 revisited. Even though it has a representative consumer and a
production technology that fixes producer prices, our static tax economy can have
multiple equilibria, as has been pointed out by Foster and Sonnenschein (1970).
To illustrate this point and its implications for our approach, consider a numerical
example: The consumer has a (concave) quadratic utility function

u(cy,cz) =22y +27¢, — 1/2(3¢2 + 8cyc, + 6¢3).
The production possibility set is
¢y +3c,£6
Cy1,6,20.
The first order conditions for the “Pareto” problem are

(22—3¢c, —4¢;)—z—p=0, =0 if ¢;>0

(27 —4c, —6¢c,)—3p=<0, =0 if ¢,>0

6—c;—3¢,20, =0 if p>0.

Solving this system of inequalities, we obtain

4z if z<3
p(z)=¢ (2z—3)3 if 3=<zZ9.
S if z29

Suppose that the ad valorem tax rate on consumption of the first good is 200
percent; in other words, T = 2. The equation z = 2p(z) has three solutions, each of
which corresponds to an equilibrium

z p ¢y C2
8/3 |14/3 | 6 0
6 3 3

10 5 0 2

These three equilibria are depicted in Fig. 2. Notice that the equilibria are Pareto
ranked: u(6,0) > u(3, 1) > u(0, 2).
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¢4
Fig. 2. See text

This example provides a stark illustration of the fundamental importance of
the fixed point problem that must be solved to find an equilibrium. Even though
there is a representative consumer and, for any fixed z, the “Pareto” problem is
a concave optimization problem with a unique solution, the fixed point problem
has three isolated solutions. It is impossible for there to be any single concave
optimization problem that has each of these three equilibria as solutions.

Example 4 revisited. The problem of multiplicity of equilibria is more acute in
dynamic economies than it is in static economies. It is easy, for example, to construct
a robust example in which our dynamic tax economy has an infinite number of
equlibria. To do so, let us impose the side conditions on the first order conditions
for the “Pareto” problem. If ¢, k,, and p, are all strictly positive, we can combine
the three corresponding first order conditions to obtain the second order difference
equation

(1 +’C)uz(f(k,)—ak,+1,k,+1)_aul(f(kt)“akwpkwl)
+ﬁui(f(kw1)_ak1+2’kr+2)f,(k,+1):0-

This difference equation requires two initial conditions. The value of k, is given.
How much freedom is there in choosing k,? To answer this question, we can
linearize this difference equation around a stationary solution k. (To guarantee
the existence of such a solution we would have to impose additional restrictions
on f; the example that we shall construct, however, has such a stationary solution.)
The local stable manifold theorem from the theory of dynamical systems says that,
in nondegenerate cases, what is true of the linearization is true of the nonlinear
system itselfin some open neighborhood of the stationary solution (see, for example,
Irwin 1980, Chapter 6).

To study the qualitative behavior of the linearization, we compute the roots
of its characteristic polynomial, in this case a quadratic. If both of the two roots
of this quadratic are less than one in modulus, then all values of k, and k, lead
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to convergence to the stationary solution. If one root is less than one in modulus
and the other is greater, then there is a one dimensional affine set of values of k,
and k, that lead to convergence to the stationary solution. If neither root is less
than one in modulus, then all solutions to the difference equation diverge from
the stationary solution unless kg =k, = k.

The local stable manifold theorem says that, if both roots are less than one in
modulus, then the stable manifold of the nonlinear system — the set of values (ko, k,)
that lead to convergence to k — is an open neighborhood of (k, k) in RZ; if one root
is greater than one and one root less, then it is a one dimensional manifold that
contains (k, k) and whose best linear approximation near (k, k) is the stable set of
the linearized system; and if neither is less than one, then it is the single point
(k,k). It is only when one of the roots is exactly equal to one in modulus that
behavior of the linearized system provides no guide to behavior of the nonlinear
system.

Since k, is given, two roots less than one in modulus implies that there is a
continuum of equilibria indexed by the choice of k,: Given k, and k,, we can
compute the sequence k,,ks,..., using the difference equation. The values of the
other variables can then be computed using the equilibrium conditions. A steady
state of this economy is a vector (f, 4,7, 9, ¢ %, k) such that the sequence

(pt’ Q5T Vir Cos Xos kt) = (ﬁtﬁ5 ﬂt g, Brfa ﬁtﬁs ¢ %, l;)

satisfies all of the equilibrium conditions except possibly k = k,. Given a stationary
solution k to the difference equation, we can easily use the equilibrium conditions
to compute the steady state values of p,q,r,y,c, and x. Studying solutions to the
difference equation that converge to k is equivalent, therefore, to studying equilibria
that converge to the corresponding steady state.

The economy may have other equilibria that diverge from the steady state, or
it may have equilibria in which some ¢,, p,, or r, is equal to 0, in which case the
first order conditions are not all equalities. If, however, the steady state values of
é,p, and # are all strictly positive, then two roots of the characteristic quadratic
being less than one in modulus ensures a continuum of equilibria if k, is close
enough to k. Notice that it is impossible for both roots to be less than one in
modulus in a model whose equilibria solve a concave optimization problem without
endogenous parameters: since there is a unique equilibrium, the roots exhibit
either saddle-point splitting, one less than one in modulus and the other greater,
or instability, both greater than one.

The relevant linearized difference equation has the form

ay(k,, , — K)+ oy (k,y = R)+ ook, — k) =0
where
oo =((1+uy, —au, ) f
o, = —a(l +Tugy + (1 +7)uyy +auy, —auy, + By, f72+ puy f7
ay = Pluy; —auy,)f.
The characteristic equation is

A2 +a A+ o =0.
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The two roots can easily be computed using the quadratic formula. Suppose that
we normalize so that «, = 0 (by reversing the signs of the coefficients necessary).
Then the necessary and sufficient conditions for both to be less than one in modulus
are
o, — g >0
o, +oy +ag>0
o, —oy +ay>0.

We can construct a numerical example with a continuum of equilibria by
modifying Example 3 considered previously. Suppose that the momentary utility
function is

u(co k,, ) =22¢,+ 27k, , , — 1/2(3¢2 + 8¢k, , | + 6K2, ).

The ad valorem tax rate is again t=2. Suppose that f(1)=6+4f'(1) and
a=3+Bf'(1). Then k =1 is a stationary solution to the difference equation that
corresponds to the equilibrium (¢, ¢;) =(3,1) of the previous model. At the steady
state (p, 4,7, 9,¢, %, k)= (3,9+3817,31,36,3,1,1),

u; =9
U, =-—3
Uy =uy =—4
Uy, = —6.
Consequently,
ag=—3f" +3Bf"

oy =328 —3Bf"* —3B°f"* + 9Bf"
ay = S+ 3B
For a wide range of choices for g, f’, and f”, both roots are less than one in
modulus. Suppose, for example, that f=2/3, /' =1, and /" = — 1/9. In this case,
the production function could be the (concave) quadratic
S(k) =20/3 + (1)(k — 1) — 1/2(1/9)(k — 1)*
= (101 + 20k —k*)/18.
The characteristic equation is
(14/3)2> —(7/3)A—1=0,

whose two solutions are

2= TEV2T 62761, —0.2761.

The multiplicity of equilibria of this example arises because equilibria are
solutions to a fixed point problem involving an infinite number of equations and
unknowns. Such fixed point problems often exhibit infinite numbers of solutions.
See Kehoe, Levine, Mas-Colell, and Zame (1989) for a discussion of the
mathematical issues involved. Notice once again that the optimization problem
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that any equilibrium solves is concave. In particular, for every fixed sequence of
parameters zq,z,,..., there is a unique solution.

Using the techniques of differential topology, we could show that each of the
two tax examples that we have studied is a regular economy, and that any small
perturbations to the parameters of functional forms of these examples give rise to
economies whose equilibria have the same qualitative features. These examples of
multiplicity are, therefore, robust. See Mas-Colell (1985) for a discussion of
regularity in static economies without externalities or taxes and Kehoe, Levine,
and Romer (1990) for a discussion of regularity in dynamic economies; Kehoe
(1985) shows how these concepts can be applied to tax economies.

There are also robust examples with unique equilibria, however. In particular,
suppose that tax distortions are small. In either economy, Example 3 or Exampile 4,
we know that there is a unique equilibrium if z = 0. Except for degenerate cases,
the economy where 1 =0 is a regular economy. Consequently, for any t small
enough the economy also has a unique equilibrium.

To illustrate this point consider again the static tax economy, Example 3. We
can compute the equilibria for different values of 7 by solving the equation z = tp(z).
For 0 < 7 < 9/5 there is a unique equilibrium where z = 4t/(1 +7), p=4/(1+7), and
(c1,¢,)=1(6,0). For 9/5<1<3 there are three equilibria:

z D ¢1 €2
4t/(1+7) 4/(1+1) 6 0
3t2t-3) | 3/27—3) | (15t=27)/2t—3) | B3—1)/(2t—3)

St 5 0 2

For 1> 3 there is a unique equilibrium where z= 51, p=5, and (c,,¢,) =(0,2).

For every value of 1 except 9/5 and 3 the economy is regular. It is only at
these two critical economies that the qualitative characteristics of the set of
equilibria changes. Every economy with t<9/5, for example, has a unique
equilibrium where (c,,c,) = (6,0). At the critical economy with 7=9/5, however,
a new equilibrium appears at (cy,c,) =(2,0). See Fig. 3.

Characterizing all of the equilibria of our dynamic tax economy as 7 varies is
a far more difficult task. It is, however, a simple matter to argue that, if 7 is small
enough, there cannot be a continuum of equilibria that converge to any steady
state. The necessary and sufficient condition for the two roots of the characteristic
quadratic to be both less than one in the modulus can be combined to yield the
necessary condition

laz| —fag] >0

where o, = B(u;, —auy,)f and og=((1+17)u,, —auy,)f’. If 1=0, then this
expression becomes

(B—Dluy, —auy,| >0,

which is impossible since 8 < 1. It is easy to check that this condition cannot be
satisfied if 7 is small enough.
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Fig. 3. See text

Fig. 4. See text
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Example 1 revisited. Like distortionary taxes, externalities can create multiplicity
of equilibria in economies that would otherwise have unique equilibria. Consider
again our static externality economy. As we have seen, an equilibrium is a solution
to the fixed point problem L= #(L), where £(L) is implicitly defined by the first
order conditions of the “Pareto” problem. At an interior solution these conditions

can be combined to yield
ul(f({’ L)s 11— {)fl(fﬂ L) - uZ(f(/’ L)5 1 - [) =0.

Suppose that L= £(L),0 < L < 1, is a solution to the fixed point problem and that,

at the equilibrium where ¢ = f(L,L), x=1—L,and £ =L,
uuff —2u, fi+uyfiy +upy #0.
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Then the implicit function theorem says that #(L) is continuously differentiable in
some open neighborhood of L and that

“11f1f2+“1f12’_u12f2
“11ff—2“12f1 +uyfi1+uz

Suppose now that the functions u and f are such that there is such a solution
L where ¢/(L) > 1. (Such an example is, of course, easy to construct using quadratic
functions as in the static tax example.) Then there are necessarily at least two
more equilibria as Fig. 4 illustrates.

Once again, however, there is necessarily a unique equilibrium if the externality
is small enough. If the externality is small, then f, and f,, are close to zero. In
this case, ¢'(L) is always close to 0. For there to be multiple equilibria, however,
it is necessary that #'(L) = 1 at some equilibrium.

{'(L)=

Example 2 revisited. It is also easy to construct a dynamic economy that has a
continuum of equilibrium because of an externality. Such models have been
constructed by Howitt and McAfee (1988) and Spear (1988). Indeed, the dynamic
externality economy presented earlier can have a continuum of equilibria. Suppose
that the first order conditions of the “Pareto” problem are all satisfied with equality.
Then we can reduce the problem of finding an equilibrium to the problem of
finding solutions to the system of two first order difference equations

- u((ct) + ﬂu,(cz+ l)fl(kt+1’ct+ 1) =0
flkye)—k,, —c,=0.

Once again there is only one initial condition, k, = ko.
As a stationary solution (¢, k), if one exists, this system can be linearized as

RS ot S P o]
0 1 ko, —k] Lr-1 fillk—kS

We can choose u and f so that there is a stationary solution to this difference
equation with a continuum of solutions that converge to it and satisfy ko =kg.
To do so, we choose u and f so that the two eigenvalues of the matrix

[“I"Fﬂ“’fu ﬂ“,fu]_l[ u’ 0]
0 1 -1 fi

are both less than one in modulus. These eigenvalues are solutions to the
characteristic equation

0(212-#0(1/14-(10:0

where
ao=—u"/p
ay =u'/B+ufi,+u' —puf(f—1)
ay=—u'—PBu'f,.

Suppose, for example, that (¢, k=@21), =12, ¥2)=8,uw"(2)= -2, f1(1,2) =2,
f(1,2)=2,f1,(1,2) = —2,and f,,(1,2) = — 3/4. Then oy = 4,4, = —4,and a, = 5.
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In this case the two eigenvalues are 1 = 2/5+4/5i, which have modulus | | = 0.8944.
As with the dynamic tax example, we can choose quadratic functions u and f that
satisfy these restrictions.

Notice that, for there to be a continuum of equilibria, we require that f; and
f,, be significantly different from 0. If £, and f,, are both close to 0, in other
words, if the externality is small, then the linearized system exhibits either instability
or saddle-point splitting. This rules out a continuum of equilibria that converge
to the steady state where (¢, ﬁ) =(2,1).

6 Multiplicity of equilibria in overlapping generations models

Our discussion of the possibility of multiplicity in the dynamic economies with
externalities and taxes is suggestive of similar discussions of indeterminacy of
equilibria in overlapping generations economies (see, for example, Kehoe and
Levine 1985a). In this section we examine the similarities between these two
approaches. Just as multiplicity of equilibria can occur in the pure-exchange
economy with two consumers and two goods in which all equilibria are Pareto
efficient because of heterogeneity of consumers, indeterminacy can occur in an
overlapping generations economy because of the infinite number of consumers
and not because some equilibria are not Pareto efficient. This suggests that the
continua of equilibria in the dynamic models presented earlier is due to the infinite
number of welfare weights and side conditions and not because of Pareto
inefficiency of equilibria. See Kehoe, Levine, Mas-Colell, and Zame (1989) for a
discussion of the relationship between indeterminacy and equilibrium conditions
with infinite numbers of equations and unknowns.

Example 5. To illustrate the possibility of a continuum of equilibria, each of which
solves a social planning problem, in an overlapping generations economy, we
consider the model presented by Kehoe and Levine (1990) in which there is a
single consumer, who lives for three periods, in each period and a single good in
each period. Such an example cannot be constructed with consumers who live for
two periods and one good in each period; it is possible to interpret our example,
however, as one in which there are two consumers who live for two periods in
each generation and two goods in each period.

The consumer born in generation t,t = 1,2,..., chooses the consumption plan
(¢}, ch, ¢ty ,) to solve

max u(c;, ¢, 1, €4 2)
subject to

t 3 1
PiC+Pop1Cret T Pie2Cia2 SPW1L Dy W2 T P12 Ws

=20, s=t t+1, t+2

Here u is a continuously differentiable, strictly concave, monotonically increasing
utility function and (w,,w,,w;) is an endowment vector. Notice that, although
this model is stationary in the sense that u and (w,,w,,w;) do not change over
time, it allows a great deal of heterogeneity of consumers: consumer 1, for example,
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has utility for, and endowments of, only goods 1,2, and 3, while consumer 5 is
concerned only with goods 5,6, and 7. In addition to these consumers, there is a
consumer who lives only in period 1 and 2. He solves

max u°(c?,¢9)
subject to
P1C + pacy S pyws + pows.
We could also allow for an additional consumer who lives only in period 1, but,
since the only equilibria we consider here have no fiat money, such a consumer
could do nothing more in equilibrium than consume his own endowment.

An equilibrium of this model is a price sequence py, p,,..., and an allocation
(c,¢9),(c1 5. c;), ..., such that consumers maximize utility taking prices as given
and the allocation satisfies

S+ci—wi—w,; 20, =0 if p;>0
S+cl+c—wi—w,—w; 20, =0 if p,>0
AT+ bt —wy—w,—w, 20, =0 if p,>0, t=34,....
Consider now the Pareto problem of choosing an allocation to maximize
o)
20U eD) + T (el 1.l )
t=1
subject to the above feasibility conditions. If an equilibrium satisfies the property
a0
Z pt < CD,
t=1
then it solves a maximization problem of this sort where
at = I/At = pt/ul(ciﬁ C£+ 12 c:+2)-
Overlapping generations economies typically have many equilibria that do not

satisfy this property. Some are Pareto inefficient and some satisfy the more general
Pareto efficiency criterion

M8

1/p,=OO

t=1

(see Balasko and Shell 1980 and Burke 1986). In these cases the social welfare
function would not converge at an equilibrium.

Actually, every equilibrium satisfies conditions that look like first order
conditions for a Pareto problem. The difficulty is that the social welfare function
may not converge. Using the overtaking criterion, we could extend our analysis
to equilibria that satisfy the above general efficiency criterion. We could even use
this approach to prove that this efficiency criterion is, under approximate condi-
tions, necessary and sufficient for Pareto efficiency. We shall not pursue this issue,
however.

Any solution to the Pareto problem satisfies all of the equilibrium conditions
except the budget constraints. If we define savings functions as for the model with
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two consumers and two goods, equilibria correspond to a sequence of welfare
weights such that

s,(0tg, &y5...)=0.

Again, this is a system with an infinite number of equations and unknowns.
Kehoe and Levine (1990) present an example in which it has a continuum of
solutions. In it consumer ¢, t = 1,2,..., has the utility function

2
u(ci’ C:+2’C:+2) = Z Bi((C:H)b —1)/b
i=0
and consumer O has the utility function
2
u%(cd, ) =3, B(c))’ — 1)b.
i=1

They linearize the equilibrium conditions around a steady state and show that for
B=1/2,b= —3, and (w;, w,,w3)=(3,12,1),(w), w3) can be chosen in many ways
so that there is a continuum of equilibria, all of which converge to a steady state
in which p, = (0.7925)’. Each of these equilibria is, of course, Pareto efficient and
solves a social planning problem.

7 Advantages and limitations of the approach

To compute equilibria of general equilibrium models we must, in general, be able
to solve fixed point problems. (See Uzawa 1962 and Scarf 1982 for a discussion
of this issue.) The characterization of equilibria as solutions to optimization
problems is useful in the computation of equilibria to the extent to which it is
easy to find the optimization problem that an equilibrium solves. There is always
a trivial optimization problem that an equilibrium (X, p) solves:

max — (|l x = 2>+ llp—pI?).

The only way we can find this problem, however, is to compute the equilibrium
by some other means. This sort of characterization is obviously not very useful.
Another point worth making about the optimization problems that we have
considered is that they are all concave maximization problems, which have unique
solutions that are easy to verify as solutions and relatively easy to compute. Any
fixed point problem can be recast as an optimization problem,

max — ||z —g(@)|*.

Because the objective function is not concave, however, this formulation is not
very useful.

Sometimes equilibria of simple economies can be shown to solve optimization
problems with few or no side conditions. Consider, for example, economies without
externalities or taxes in which the consumers satisfy the aggregation conditions
considered by Gorman (1953), where utility functions are all homothetic and
identical but endowments arbitrary, and by Chipman (1974), where utility functions
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are again homothetic but possibly different and endowment vectors are pro-
portional. In either case equilibria could, of course, be characterized as solutions
to maximizing a weighted sum of individual utilities. There are alternative
characterizations, however, that avoid the use of welfare weights that must be
solved for side conditions.

Consider first the case where utility functions are identical. Let u be the
homogeneous of degree one representation of the common utility function. Then
the unique equilibrium of an economy with m consumers can be found by solving

Y =Y wey

i=1 i=1

subject to

where Y is the closed, convex production cone.
Consider now the case where utility functions are different, but endowments

are all positive proportions 6;, Y 6;=1, of the aggregate endowment vector w.
i=1

(This condition ensures that the distribution of income is fixed.) Let u' be the
homogeneous of degree one representation of the utility function of consumer i.
Then the unique equilibrium of this economy can be found by maximizing
Y 6;logu'(c') subject to the feasibility constraints.
i=1

Similarly, there are tax economies in which the equilibrium solves a optimiza-
tion problem without side conditions. Any such economy must, of course, have a
unique equilibrium. The ease with which we can construct examples with multiple
equilibria suggests that these models cannot be very general. Becker (1985)
considers a model with a tax on capital holdings in which the representative
consumer solves

max i Bu(c,)
subject to -
Zlo ple k)< t;) e+ (1=1)rk)
ko < kg
¢, k, = 0.

Here y, = p,f(k)—rk, + trk, is the consumer’s labor income plus a lump sum
rebate. Our approach would be to characterize the equilibrium as a solution to

max i ﬂ'(u(c,) - zrkt)
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subject to
etk Sflk), t=0,1,...
ko < ko
¢, k.20

along with the side conditions z, =1p, f'(k,). Becker, however, shows that an
equilibrium also solves

max ;0 (B(1 —1)Yu(c,)

subject to
¢+k, =fk) t=0,1,...
ko <Ko
¢, k, 2 0.

Danthine and Donaldson (1986) extend Becker’s analysis to economies that
allow uncertainty. Judd (1987) shows that some similar continuous time tax
economies also have equilibria that solve optimization problems without side
conditions. He further argues that, although there are few cases in which equilibria
of tax economies can be computed exactly by solving an optimization problem
without side conditions, research in this area may be helpful in updating guesses in
iterative methods for computing equilibria. Suppose, for example, that we fix z,
at its steady state value in a dynamic tax economy. We can then solve the
optimization problem for this guess of z, and use the solution to update z, and so
on. Kydland and Prescott (1977) and Whiteman (1983) have discussed using an
algorithm of this sort to compute equilibria in economies with externalities. Further
research is needed to see whether this algorithm has any advantages over
alternatives.

A major attraction to being able to characterize an equilibrium of a model as a
solution to an optimization problem without side conditions is that it assures us
that the model has a unique equilibrium. Whether such an optimization problem
exists for a given set of equilibrium conditions, regardless of whether or not it is
easy to find, is an integrability question. Dechert (1978) provides necessary and
sufficient conditions for discrete-time models, Brock (1975b) for deterministic
continuous-time models, and F.-R. Chang (1988) for stochastic, continuous-time
models. Unfortunately, although there is undoubtedly much room for research in
this area, the integrability conditions appear to be either very difficult to check,
or very restrictive.

Our approach is still attractive in situations where the number of side conditions
is small. Consider, for example, an economy in which the government uses specific
taxes, taxes such that the market price of a good is p; + o; rather than py(1+1;),
to finance a fixed vector of government purchases g. In a model with n goods and
m consumers, we define the “Pareto” problem

m
max Y au'(c)—a 3, 0; ) C;

i=1 ji=1 i=1
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subject to
m

Y (¢ —w)+geY.

i=1
Here «,,...,a, are welfare weights, o, is a scale factor applied to the vector of
specific taxes, w',...,w™ are endowment vectors, and Y is a production cone. An
equilibrium corresponds to a vector (g, %4, . . ., @,,) that satisfies the side conditions

% ), 0; Y, i) — .;1 pi(0)g;=0

Y, [pj@w' — (pj@) + 200,)ci ()] =0, i=1,....m.
i=t

The first condition is the government budget constraint, while the other m
conditions are the usual savings functions. Notice that there is a finite number,
m + 1, of side constraints. This approach may be especially valuable in an optimal
taxation framework where the government varies the vector ¢ to maximize social
welfare: for any given vector g, it needs to be able to compute the resulting
equilibrium.

Our approach may also be useful for deriving properties of equilibria with
taxes and distortions. Jones and Manuelli (1990) and Kehoe and Levine (1985b),
for example, consider dynamic models that satisfy strong stationarity properties.
Using techniques from the theory of dynamic programming, Jones and Manuelli
are able to show that, because it solves an optimization problem, any equilibrium
must satisfy conditions that make it easy to prove existence of equilibrium. Kehoe
and Levine demonstrate that, in an economy with distortionary taxes, investment
in heterogeneous capital goods must maximize a distorted social return function.
Furthermore, prices of the investment goods are the partial derivatives of this
function. Since the function is concave in the capital goods, Kehoe and Levine
argue that, under certain conditions, this has empirical implications.

Undoubtedly, it would be possible to derive the results of Jones—Manuelli and
Kehoe-Levine by examining the equilibrium conditions for the model without
using the optimization characterization. The theory of dynamic programming
provides a powerful set of tools, however, which can ease many burdens of proof.
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