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In this paper we extend the concept of regularity developed by Mas-Colell and Kehoe for
constant-returns production economies to economies with primary and intermediate goods. To
do 50, we must deal with consumer demand functions that satisfy boundary conditiens more
general than any considered previously. We initidlly specify the production technology as a
linear activity analysi$ mode] that allows free disposal of all commodities. Later, we indicate
how our results can be extended to ¢conomies with more general production technologies.

1. Introduction

In recent years mathematical ecohomists have made heavy use of the tools
of differential topology in their study of economic equilibrium. The
advantage of the différentiable approach is that the concept of regular
economy, developed by Debreu (1970), distinguishes certain degenerate
situations from generic ones. In an appropriately parameterized space of
economies a regular economy is one whose equilibria are locally unique and
vary continuously with the underlying data. Moreover, the concept of fixed
point index, introduced into economics by Dierker (1972), provides a method
for counting the equilibria that implies necessary and sufficient conditions for
unifueness of eyuilibrium in a regular economy. The appeal of the concept
of regularity is enhanced by its genericity in the space of economies; almost
all economies are regular in an appropriately defined topological or measure-
theoretic sense.

With several notable exceptions [Fuchs (1974), Kehoe (1979, 1980), Mas-
Colell (1975, 1976, 1978), and Smale (1974)], researchers in this area have
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focused their attention on the pure exchange model that allows no
production. Both Mas-Colell (1978) and Kehoe (1980) have extended the
concepts of regularity and fixed point index to economies with constant-
returns-to-scale production technologies. Unfortunately, although the
approaches employed by these two writers differ significantly, they share a
common shortcoming: Neither allows for the existence of primary or
intermediate goods.

To demonstrate the genericity of regular- economies, researchers usually
allow perturbations of the consumers’ excess demand functions. This
procedure is entirely natural for economies where all commodities enter into
consumers’ final demands. In cconomies where production plays an
important role, however, there are likely to be commodities that are
inelastically supplied as inputs into the production process and commodities
that are only produced to serve as inputs in the production of other
commodities. We call the first group of commodities primary goods and the
second group intermediate goods. We call commodities that are neither
primary goods nor intermediate goods final goods. Obviously, if we perturb
the excess demand function of an economy with primary and intermediate
goods, we may destroy the primary and intermediate characteristics of these
commodities.

Actually, the approach used by Mas-Colell (1975) makes explicit provision
for primary, but not intermediate, goods. His results, however, pertain only
to equilibrium price vectors that are elements of some given compact sct of
strictly positive prices. To extend these results to all possible equilibrium
prices requires assumptions about the behavior of the demand functions at
vectors where some prices are zero that, in effect, rule out the possibility of
primary goods. In fact, these assumptions are necessary to prove the
existence of equilibrium for his model.

In this paper we extend the concept of regularity developed by Mas-Colell
and Kehoe for constant-returns production economies to economies with
primary and intermediate goods. To do so, we must deal with consumer
demand functions that satisfy boundary conditions more general than any
considered previously. We initially specify the production technology as an
activity analysis model that allows free disposal of all commoditics. Later, we
indicate how our results can be extended to economies with more general
production technologies.

2. The model

Let us begin by describing our economic model. We specify the
consumption side of the model using the concept of excess demand directly,
leaving the concepts of consumer preference orderings and initial
endowments in the background. It may help the intuition, however, to
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picture the vector of market excess demand functions &(m)— (&, (%), ..., £,{n))
as generated by aggregating the responses of consumers to a vector of non-
negative prices n=(n,,...,7,). Each consumer. sells. some initial endowment
of resources to finance the purchase of a bundle of goods for consumption.
Both the initial endowment and the consumption bundie are considered as
vectors in R", the space of n perfectly divisible commodities. The excess
demand for good i at prices =, £(n), is the difference between aggregate
consumption and aggregate initial endowment of the good. We take these
functions to be completely arbitrary aside from the foltowing assumptions:

(A1)  Differentiability. Let Z be a subset of the boun-
dary of R% that includes the origin.

(a) ¢ is a continuously differentiable function
defined over the domain R\ \Z.
(b) is ‘bounded from below on R"\Z,
(¢) ¥ n'—xm where n'e R\\Z and meZ\{0}, then
[¢6)|~>co.
(A2} Homogeneity. ¢ is homogeneous of degree zero;
that is, &(tn)=&(n) for all £>0,

(A} Walras law. ¢ obeys Walras’ law; that is,
7' E(m)=0.

Assumptions A.2 and A3 are standard and require no comment. Several
remarks may be necessary, however, to prevent the technical nature of
assumption A.l from obscuring its meaning. In Kehoe (1980) it is assumed
that ¢ is C' on all R%\{0}. Clearly, excess demand functions that satisfy this
condition also satisfy assumption A.l1 in the case where Z is the origin.
Likewise, excess demand functions that satisfy the more familiar
differentiability and boundary assumptions employed by both Debreu (1970).
and Mas-Colell (1978) also satisfy assumption A.1 in the case where Z is the
entire boundary of R%. The generality of assumption A.l is motivated by the
situation that we are considering. A primary good is a commeodity i for
which {{n)=—w,; for some w,;>0; here w; can be interpreted to be the
aggregate initial endowment of commodity i An intermediate good is a
commodity i for which £{n)=0. Neither Kehoe’s nor Debreu’s and Mas-
Colell’s boundary assumptions are appropriate for an economy with primary
and intermediate goods. In an economy with primary goods, for example,
Walras’s law is not compatible with the assumption that ¢ is continuous at
price vectors where the only price that is positive is that of some primary
good. To illustrate this peint, suppose that £(r)= —w,<0 is the demand for
a primary good. Then at n=(1,0,...,0) wé&m)=—w,#0 if £ is, in fact,
continuous. On the other hand, it is not possible to assume that ||é(x)|
becomes unbounded at price vectors where the only price that is zero is that
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of a primary good, Walras’s law and the assumption that ¢ is bounded from
below would then cause a contradiction.

One problem with assumption A.l is that it requires ¢ ecither to be
continueus or to have unbounded norm at all price vectors in R%\{0}. Even
this is too much to expect of price vectors whose only positive elements are-
the prices of some intermediate goods. It is natural to assume that consumers
face the same situation at a price vector n° where the only positive price is
that of an intermediate good as at the price vector where all prices are zero.
Consequently, the homogeneity assumption makes it impossible to assign
any value to &(z°) or even to claim that ||{(z")]| becomes unbounded along ali
sequences n'—n’. In our subsequent treatment of economies with
intermediate goods we are able to avoid this problem by leaving the concept
of excess demand undefined at all such price vectors.

Our initial characterization of the production techmology is that of an
activity ‘analysis model. As is usual with constant-returns technologies, the
delineation of individual produccrs or firms does not matter in the study of
equilibria; all that matters is the aggregate technology. Such a technology is
specified by an n x m activity analysis matrix A. Each column of 4 represents
an activity, or known technological process, that transforms inputs taken
from either the nx 1 vector of initial endowments or the outputs of other
activities into outputs, which are either consumed or further used as inputs.
Positive entries in an activity vector denote quantities of outputs produced
by the activity, negative entries denote quantities of inputs consumed.
Aggrepate production is denoted Ay where y is an mx1 vector of non-
negative activity levels. We assume that A satisfies the following:

{Ad) Free disposal. A inclodes n  free disposal
activities, one for each commodity. In other
words, the n % m matrix —1I is a submatrix of 4.

(A.5)  Boundedness. There are no outputs without any
inputs: {xeR"|x=Ay20, yz0}={0}. Equiva-
lently, there exists some vector ZeR", strictly
positive, such that 7’4 <0.

For our present purposes an econerhy is completely described by an excess

demand function representing the consumption side and by an activity
analysis matrix representirig the production side. We define an equilibrium of

(¢, A) in the usual way:

Definition. An equilibrium of (£, A) is a price vector e R%\Z that satisfies
the following conditions:

(a) #A=L0.
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(b) There exists 720 such that £(#)= AJ.
© ZL (fi=1

We shall find it useful to consider whole spaces of economies, To do so,
we must specify some topological structure for the set of functions that
satisfy assumptions A.1-A.3 and the set of activity analysis matrices that
satisfy assumptions Ad-A.5. Let of = {—1I} x R"™* ™" be the space of activity
analysis matrices; here —I is the submatrix of free disposal activities. We
endow & with the standard topology on R"*¢ " * by defining the metric

¥
d(4', AH= (E z (ai,-— ,-1-2) for any A', A’ess.

i=]1 j=n+

Let ' be the space of excess demand functions. We endow 2' with the
topology of uniform C! convergence on compacta. Letting M be some
compact subset of R%\Z, we define the metric

( )—‘3‘5'

(m)

for any

dy(&, £?)= sup |Eim)— &3 m)|+ sup
R i, neM L, reM

. e2e 9,
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The homogeneity assumption A.2 allows us to restrict our attention to
compact subsets of S\Z; here S is the unit simplex

n
{nek“fn,-g(), ¥ 7:,-=1}.
=1

The space of economies £' =@ x o/ has the induced product topology: For
any (&', A), (&%, A)e &' we define the metric

dul(E, 41, (&%, AN =dulE", £+ d(A*, AD).

Definition. An economy (£, A) is an element of the topological space £'=
P x o

3. Existence of equilibrium

To demonstrate the existence of equilibrium for an economy (£, )& &, we
construct a continuous, single-valued function g:S—8 whose fixed points are
equivalent to equilibria of (¢, A). The generality of the boundary conditions
embodied in assumption A.l forces us to modify the approach used by
Kehoe (1980).

We begin by noting that A.1 implies that there exists we R such that
{(m)z —w for all e RE\Z, Observe that w could be interpreted as the vector
of aggregate initial endowments, although, in the formal system that we have
here, —w need only be some lower bound on ¢. Assumption A.5 implies that
the production possibility st (xe R"|x~Ay2 —w, y20} is bounded. Hence
there exists geR% such that ji>x for all xe{xeR"|x=Ayz —w, y=0}.
Letting 7€ R" be such that 7>0 and 7’ 4 <0, we define the set

W={neR\{0}|T¢(m<7'a}.

Notice that we can choose the elements of ji larpe enough so that W is non-
empty and contains 7 in its interior. Assumption A.l implies that 7'&(n'}— w0
as n'—neZ\{0}. Therefore W nZ=¢. Note too that any equilibrium # is
such that

R)e{xeR"|x=Ayz —w, p20}.

Consequently, #'é(#) <a'ji implies that any equilibrium # is contaihed in the
interior of W relative to R%\{0}. The motivation for these definitions should
become apparent in the subsequent lemma.
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We want to bound & away from infinity in such a way that it remains a
- smooth function and the equilibria of (¢, 4) are not affected.

Lemma 1. Let i, meR% and Wc<R\{0} be defined as above. For any
(&, A)e 8" there exists a C" function E*: R \{0} = R" such that:

(@)  &* satisfies assumptions A.2 and A.3.
(b) E¥m)=E&m} forall meW,
(¢) #Emza'h for all meRW\{0}, né¢W

Proof. let

O={reR" |n=tz,t20}

We define the C! function {: R*\Q—R" by the rule

Ry )] — ), A

Ci(n} = (Z ﬁf)(zﬁf) — (2 njﬁj)z Z ﬁfﬁj;

here all summations are over j=1,...,n. Observe that { satisfies A.2 and A.3
and is such that #'{(m)=7"j1. By smoothing averaging { with { on R\W, we
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can construct the desired function {*, Let #:5-R be a C* function with the
following properties:

Hmy=1 if #é(n)=7R,
O(m)=0 if Té&nz2x'E orif neZ,

O<Omy<l if #ji<aé(n)<2 i
Assumption A.1 implies that we can always find such a function. See Hirsch
(1976, pp. 41-42) for an explicit construction. We let #: R%\{0} —+R be defined

as y(m)=0(n/e'n); here e=(1,.,.,1)eR". To demonstrate our contention, we
merely define

@ =mEm +( —nm)in) i TeRLNZUQ)
=¢m) if TeQ\[o),
={(n) if mezZ\{0}. O

This iemma allows us to exploit the results contained in Kehoe (1980),
where it is assumed the ¢ is C! on all R%\{0}. Letting N be any non-empty,
closed, convex subset of R, we define p¥:R"— N as ihe contineous map that
projects any point in R" into the point in N that is closest in terms of
euclidean distance. We also define the set

Sa={neR"|wA<0,en=1}.

Note that, as a consequence of A.4 and A5, §, is a non-empty, closed,
convex subset of S. In fact, it is a convex polyhedron.

Definitivn. For any coonomy (¢, A)e #' define the map g:5—8 by the rule
glm)=p*Hm+E¥m).

The definition of this map g is based on a similar construction due to
Todd (1979). Kehoe (1980) has proven the equivalence of fixed poiats of g
and cquilibria of (£, A). Wc now prescnt an alternative proof, which is more
easily extended to general constant-returns production technologies.

Theorem 1. g(R)=1# if and only if # is an equilibrium of (£, A).
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Proof. g=g(n)if and only if
@—n—Em)(g—n— MY S p—n— M) (p—-n—Cm)),
for all peS,. Because $, is convex, this inequality holds if and only if
(g—n—iMn)Ygs(g—n—EMn)p,

for all peS,. For proof of this statement we refer to Berge (1963, p. 162). If
(m+E*m) ¢S, then this. inequality can be interpreted as stating that the
hyperplane passing through g with normals {g—=n — &*(%)) separates g from
S, I {n+E¥xm)eS,, then g=n+EX(n), and the inequality is trivial.

Suppose #=g(#). Then the above inequality implies that

PEHRY S AEH(A) =0,
for all peS,,. Since we can multiply this inequality by any positive constant
without changing it, we obtain

PE¥@)Z0 forall peY%={neR"|rA<0}.
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This inequality holds if and only if £*(#) is an element of the dual cone of
Y¥, that is, if and only i &*(#) is an element of the production cone Y,=
{xeR"|x=Ay, y20}. Now &*#)=Aj implies that # is in the relative
interior of W, Otherwise, n'é*A)=#'u>0 and ¥ A7 £0 cause a contradiction.

Consequently, since fied, and &A)=C*A)=Ap, 4 is an equilibrium.
Conversely, if # is an equilibrium then

PEMR)=pC(R)=0 forall peS,
which implies that g([@=7#. []

Observe that, because g is continuous and maps the non-empty, compact,
convex set § into itself, it has a fixed point. Hence any economy (&, A)e&!
has an equilibrium.

4. Regular economi'eL-S

In the following analysis we focus our attention on derivatives of g. To
simplify the presentation, we let X<=R” be a smooth (that is, C') »n-
dimensional manifold with boundary that contains S in its interior, does not
contain the origin, and is compact and convex. For example, it is easy to
verify that

X={xeR"

n
3 (x;-m)*=¢ for some nES}
i=1

satisfies these conditions if 0<g<1/n. We can casily extend &* to a C' map
on X. [See Lemma 1 in Kehoe (1980) where the approach follows closely
that of Saigal and Simon (1973).] We are, therefore, justified in considering X
as the domain of g.

We want to investigate the properties of economies (¢, A) for which 0 is a
regular value of the map (g¢—1):X—R"; here I is the identity map on R™
Recall that for a ¢! map f:M—N from a smooth manifold of dimension m
to a smooth manifold of dimensien »n the concept of regularity is usually
defined as follows: A point xeM is a regular point if Df, : T(M)— Ty, (N) has
rank m; in other words, is onto. A point ye N is a regular value if every point
x for which f(x)=y is a regular point. Points in M that are not regular
points are critical points; points in N that are not regular values are critical
values. By convention, any point y for which the set f~(y) is empty is a
regular value. Also, if m<n, then clearly every point xe M is a critical point.
We extend these concepts to maps such as g that are not everywhere
differentiable by requiring that the map DY, exist at a point x for x to be a
regular point.



T.J. Kehoe, Regular production economies 157

my A

Fig. 4

To gain some intuitive understanding of this concept, consider the highly
simplified equilibrium situations depicted in fig. 5. Although the diagrams
here could be interpreted as representing the first coordinales, 7y, and g,(xn)
-7y, of a two-commodity economy where

wa=1—m, and gz(ﬂ)_nz=“1 —g,(m),

we do not mean to be precise. The equilibria in (a) change character
drastically with "the slightest perturbation in the model’s underlying
parameters. In (b) the situation is even worse; there are an infinite number of
equilibria. In contrast to (a) and (b), (c) depicts a situation where there exists
a finite number of equilibria whose qualitative properties are stable under
small perturbations. The distinguishing feature here is that 0 is a regular
value of g—1 in (c), in the sense that ((3g/om)#)—1)#0 for A=g(#); in
contrast, 0is 4 critical value of g—[ in (a} and (b).

Unfortunately, the map g defined in the previous section is not everywhere
differentiable. It is easy to verify, however, that, if (£, 4) satisfies the following
non-degeneracy assumptions, then g is differentiable in some neighborhood
of every equilibrium price vector:

(A6) No column of A can be expressed as a linear combination of fewer
than n other columns,
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(A7) Let B(n) denote the submatrix of 4 whose columns are all those
activities (possibly none) that earn zero profit at = At any
equilibrium # all §, arc strictly positive in the equation &(%)

= ZDGB(M fbb-

Assumption A.7 is merely the requirement that all activities that earn zero
profits are actually run at equilibrium. It is A.6 that deserves comment.
Actually, it is somewhat stronger than needed. The requirement that B(A) has
full column rank suffices to prove that g is continuously differentiable at
every equilibrium. Clearly A.6 implies that this condition holds; as we shail
see it is also convenient for other reasons. Since it is trivial to prove the
genericity of A.6, the alternative assumption on the column rank of B(#) is
also clearly generic. '

Definition. An economy (£, A)e &' that satisfies assumptions A6 and A7
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and is such that (Dg,—1):R"»R" is non-singular ai every equilibrium is a
regular economy. The set of regular economies is denoted as #!'c &l
Economies that are not regular are critical economies.

We justify this terminology by noting that 0 is a regular value of g--1I if
(£, A) is a regular economy. In the next section we shall prove that the
conditions that define a regular economy are satisfied by almost ali
cconomies in &7, The phrase ‘almost all’ is meant in the topological sense
that #' is open and dense in &', These regularity conditions reduce to those
given by Debreu (1970) in the special case of a pure exchange economy
whose equilibria are all strictly positive,

Let us now briefly explore the significance of this definition of regular
economy. See Kehoe (1980) for proofs of the results presented here.

Definition. The_equilibrium price correspondence IT:6'—S associates any
economy (¢, A)e & with the set of its equilibrium price vectors.

1T is an upper-semi-continuous, point-to-set correspondence in the product
topology that we have given to &*. Consequently for any (£, 4)e &*, the st
II(¢, A) is a closed subset of the compact set S, which implies that [7(£, A) is
compact. If (£, A)e &', the inverse function theorem applied to g—1I at any
eI, ) implies that the equilibria of (£, 4) are isolated. Thus any economy
(¢, A)eR! has only a finite number of equilibria. Furthermore, the
equilibrium price correspondence IT is continuous on %, If (£%, A% e #' with
k equilibria, then there exists an open neighborhood % c &' of (£°, 4%), such
that all (£, 4)e# also have k equilibria. In fact, IT can be considered as the
union of k continuous single-valued functions on #. It can easily be
demonstrated that we can choose % small enough so that all (& A)e¥ are
regular. Thus the set #* is open in &', To prove that #' is open and dense
in #!, therefore, we need only prove that it jis dense.

An important concept, which is closely related to regularity, is that of fixed
point index, Whenever (£, A) is regular, we associate each fixed point of g
with an index, which is either +1 or —1, depending an the lacal properties
of the function at that point.

Definition. For any equilibrium # of a regular economy (¢, A), index (#) is
defined as
0e 0
(—1)"sgn(det [Dg,~I])=(—1)"sgn | det |e D&, B(A)
0 B{f) 0
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Utilizing a version of the Lefschetz. fixed point theorem given by Saigal and
Simon (1973), we can demonstrate that ) . e 4 index (@)=+1 for all
(£, A)e #'. This index theorem provides us with a valuable tool for
investigating the number -of equilibria of an ¢conomy.

5. Genericity of regular economies

As we noted in the previous section, to prove that %' is open and dense in
&*, we need only prove that it is dense. Our approach to proving density can
be motivated by an argument reminiscent of the counting of equations and
unknowns by Walras. Any 7 c I, A) satisfies the conditions

B#=0, &#)=Bf,-

where B is the nx k matrix of activities B(%) and y is an k x 1 vector of non-
negative activity levels. In this system of equations there are n+k equations
and n+k variables, # and 7. Although Walras’s law A.3 allows us to
climinate one of the equations, the homogeneity assumption A.2 allows us to
add one more, e'i=1. Thus these two assumptions offset each other, and we
are left with a system with the same number of variables and equations. The
regularity conditions are designed to ¢nsure that the cquilibriam pair (7, ) is
the locally unique solution to this system. If A.6 or the non-zero determinant
condition do not hold, then the equations are not necessarily independent. If,
on the other hand, A7 does not hold, then we may have too many
independent equations to expect a solution to exist. If the equilibrium
conditions do not result in a system with as many independent equations as
variables, then it is intuitively plausible that some very slight perturbation in
the underlying parameters of the economy could make the equations
independent. Similarly, if there are not as many independent variables as
equations, the same slight perturbation could make a solution impossible.
What we need is freedom te perturb the system in a sufficient number of
directions. In the argument that follows we develop a method of perturbing
the excess demand function that guarantees the density of economies
satisfying A7 and the non-zero determinant condition. The proof of the
density of A.6 is relatively trivial,

Lemma 2. The set of activity analysis matrices that satisfy asswmption A6 is
open and dense in .

Proof. Let #c—of be the subset of matrices in ./ that satisfy ¥4 <0 for
some 7 >0. Obviously 4 is dense in & since . is contained in the closure of
4. Observe that the set of matrices that satisfy A.6 are a subset of #. In
other words, by imposing A6 we are ruling out reversibility in the
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production process. Observe too that % is an open subset of both {—1}
xR ™ and o For any A%esf, WA<0 for some 7>0 implies that
there exists some e>0 such that #4<0 for all Ae{—1I}x R**" that
satisfy d(A° A) <e. Since A6 is a full rank condition, it is satisfied by some
open dense set of {—1I} x R"*™~"_ The observation that the intersection of
two open dense sets is open and dense completes our argument. [

We can demonstrate that %' is dense in &' by proving that for any (¢9, 4)
that satisfies A.6, but not A7, or not the non-zero determinant condition,
there exists (¢!, A)e#* such that dy,(£°, £')<e for any compact M = S\Z and
any ¢>0. The first step is to reduce the problem from one in the infinite-
dimensional space 2' to the finite-dimensional space R”. Define the
perturbation function 8:(R%\{0}) x R"— R" by the rule

5!(1'{,1))-—-(2": njvj/jglnj)wvi, i=1.,n

J=1

Since, for any fixed veR”, 8 is C' on R%\{0} and satisfies A.2 and A.3, (£ +48)
is an element of @' if ¢ is. For any (¢, A)e#' consider the family
{¢., A)eé“|<f,,(n)=f(7z)+5(rz, ), v R"}Y. T we can demonstrate that the set of
regular economies is dense in this n-parameter family, then the topology on
&' is fine enough so that we can conclude that 2! is dense in &'

Our argument relies on a theorem in differential topology that is a direct
consequence of Sard’s theorem {Guillemin and Pollack (1974, pp. 67-79)].

Transversality Theorem. Let M, V, and N be smooth manifolds without
boundary where dim M =m, Jim N=n, and m=n, and let ye N. Suppose that
F:MxV-N is a C' map such that, for every (x,v) that satisfies F(x,v)=y,
rank DF,, .(x,v)=n, then the set of veV for which F(x,v)=y implies that
rank DF (x,v)=n has full Lebesgue measure. In other words, if y s a regular
value of F, then for almost all veV it is a regular value of f,(x)= F(x,v).

We now prove that (¢,, 4) is regular for a dense set of perturbations ve R",
Letting B be any n x k submatrix at A, 0<k<n—1, we define

Kp={xeR"|B'x=0,ex=1},

Op={xeR"|B'x=0,ex=0}.
We also define the map f#:(KpnintX) »Op by the rule f5(x)=p?%(&*(xn)).
Recall that we have chosen X, a smooth n-dimensional manifold with

boundary that contains the fixed points of g in its interior, to serve as the
domain of £*. Here, of course, p® is the orthogonal projection of R" into the
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null space of the k+1 columns of C=[B ¢]; that is, p®*=I—C(C'C)"'C".
The advantage of this definition is that, if (£, A) satisfies A.6 and A7 then
/P agrees with g-1 in some neighborhood of every #efl(¢, A). Note,
however, that although #=g(#) implies that f¥#)=0 for some B, namely
B(#), the converse does not hold: in addition to #€K, and f%#)=0, the
condition #eS, is needed for #=g(#). Defining F(n, v)=p®*(¢*(n)+ b(r, v)),
we focus our attention on the family of C! maps F®:(Kznint X)x R"—=0y
for which the matrices B are such that K;n S, #6.

The first step in proving the genericity of regularity is to demonstrate that
we are able to perturb g in a sufficient number of directions. The exact
requirement is given in the statement of transversality density theorem.

Lemma 3. For all (n,v)e(KznintX)x R" the derivative map DFZ:R"-0y
has rank n—k—1, that is, is onto.

Proof. DFn,v)=(I—C(C'C)”1C)DS,. Now
. #1—1 n,,‘
Dé(n, v})= :
Ty Ty — 1
has rank n—1 since Dsu(ﬁ, v)e=0 while the (n--1) x (n— 1) matrix formed by

deleting any row and column j for which =,>0 is non-singular. Letting
p=rank (I — C(C'C)" 1 CD4,, we observe that

— 4 —1
ank[(: c(C'C)"tC)DS, C

=p+k+1.
0 I]p++
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Taking the second column of this matrix, multiplying it by (C'C)"1C'D4,,
and adding it to the first, we establish that this matrix has the same rank as

Ds ) Ds, C|
k v _ v _
ran [(C: C)1CDs, I] rank [ 0 0] rank [Dé, C1.

Clearly, however,

rank[DS, B e]=zn forall mneKynintX,

since D&, has rank n—1, DS e=0, and ¢e=n Consequently, p+k+12n,
which implies that pZn—k—1. (I— C(C'C)~'C)DJ, maps into Oy, however,
implying that p=n—k—1. [

If an economy does not satisfy A.7 at some equilibrium 7, then there
are two distinct. matrices B and B*, where B is submatrix of B*, such that
#'B* =0 and &(#)=Bj. In other words, the matrix of activities that earn zero
profits has more columns than the matrix of activitics in wse. In this casc
there are more equations than unknowns. By perturbing our equations we
can get rid of the solution (%, §).

Lemma 4. If an economy (&, A)e &' satisfies A6, then the set of veV for
which (£,, A) satisfies A.7 has full Lebesgue measure.

Proof. Let B* be some nx k* submatrix of 4, 1<k*<n—1, and B be some
n x k submatrix of B*, 0<k<k*. Obviously there are only a finite number of
such combinations for any nxm activity analysis matrix A. Notice that
KgnintX is an n—k*—1 submanifold of the n—k—1 manifold Kz int X.
For (£, A) to violate A.7 there would have to be some iieS, such that
#eKpnintX and FP#,0v)=0 for some such pair B and B*. Now, if we
consider the map F? with domain rostricted to (KpintX)= R
c(Kgnint X) x R", then we see that DF2(z,v) has rank at most n—k*—L.
Lemma 3 and the Transversality Theorem, however, imply that for almost
ali veR", if F5(#,0)=0, then DFE(%,v) has full rank n—k—1>n—k*—1.
Although F® takes (Kg intX)x R" into O, the image F*(Kgz nintX,v)
is a very small subset of Oy for any fixed veR" Indeed, for some set U =R"
of full Lebesgue measure the image F¥Kg. nintX,U) does not contain 0.
We apply this same argument to all possible combinations B and B*, noting
that the intersection of a finite number of sets with full Lebesgue measure
also has full Lebesgue measure.

The third requirement for (£, A) to be regular is that det[Dg;—I]+0 for
any #ell(¢, A). If the requirement is not satisfied, then we do not have, at
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least infinitesimally, as many independent - equations as unknowns. Letting
C=[B(R) e] we use the chain rule to establish that

Dg;=(I-C(C'C)"'C) I +D&,).

Lemma 5. Suppose that FX(#,v)=0 for some (# v)e(Kgnint X) x R". If DF?
maps Oy onto itself, that is, has rankn—k— 1, then det[(I—C(C'C)~*CY)
(I +D¢&,)— 1] does not vanish.

Proof. DF#, D=(I-C(C'C)~'CDE, maps 0, onte itself only if
(I~ C(C'C)"'C)DE, maps R" onte Op. Let x e R" be such that

(I-CC'O) ' CDEx - CC'C)~LCx =0,
If we could demonsérate that x=0 is the only solution to this equation, then
we  would have established our contention. Pre-multiplying by
(I C(C’0)~ '), we have

{I-C(C'C)1C)DE,x =0.
On the other hand, pre-multiplying by C(C'C)*C’ produces

CC'O)"1'x=0.

Since the columns of (= C(C'CYy ' C)D¢, and those of C(C'C)™'C’ together
span all of R",

{xeR|(I-C(C'C) ' CIDEx =0} N {xe R"|C(C'C) ™' C'x=0}={0}.
Consequently, '

[(I - C(C'0)~1CIDE, —C(C'C) 1]

=[{I-C(C'C) CYI +DE) —1]
is non-singular. [J

We combine this result with Lemmas 3 and 4 and the Transversality
Theorem to produce the following resuit.

Theorem 2. The set of regular economies #* is open and dense in
=B x A,
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Proof. _ As we have noted, it suffices to demonstrate that #' is dense in &*.
For any (¢, A), (¢, 4)e &%,

dul($, A), (€ A1=dy(L, £,).
Because & ()= &(m)+ I(m, v),

dyl&, £)=dy(0,8) for fixed veR"

Now
dp (0, ) = sup. |94, ) + sup (n, o).
i, joneM 673
For all & in any compact M < §/Z,
ool |08 5 }
|67, 0)| ==L (m,p)| =| . nw;—v|Smax i=1,...,n
aﬂ:" =1 k

Consequently, for any £>0 and any compéct M cS/Z, there is some &' >0
such that ||v]| <& implies that d\(0,8)<e, [

6. Economies with primary and intermediate goods

We can easily extend the results that we developed in the previous section
to economies with primary goods. We modify assumption A.1 as follows:

(A.1')  The first ! components of the excess demand function &, l<n, are
such that £(n)= —w, for some w;>0. £ gatisfies A1 and the set Z
includes the set H={neR"|m,, =" =m,=0},

Denoting the space of excess demand functions satisfying assumptions A.1',
A2 and A3 as 2% we give the space of economies with primary goods,
&% =%? x o/, the same topological structure as that of £*. Note that £2<=&?,
We define the map g and the concepts of regularity and index of an
equilibrium as previously. The set of regular economies in &2, £, is a subset
of 4. Since #* is open in &', #* is open in &* Nevertheless, Theorem 2
gives us no reason to expect that %2 is dense in £2. In fact, for all we know,
#% may be empty. Fortunately, this is not the case.

Theorem 3. The set of regular economies % is open and dense in
=3 x .

~ Proof. Theorem 2 implies that #° is open in 2 so all that we have to
prove is that %2 is dense in &2.



166 T.J. Kehoe, Regular production economies
We redefine the perturbation function #(z, 1) by the rule

Gdm, v)=—u,, i=1,...,1

H "
=(Z njuj/ nj)—ui, i=l+1,...,n
fes) J=Th1

Note that for any fixed veR" 4 is C* on R%\H and satisfies A.2 and A3,
For any (£, A)e &2, let

Py={veR"|p;> —wy i=1,...,1}

P, is obviously a smooth n-manifold without boundary. If &(x) is an element .
of @2, then so is £ (m)=F{r)+ Az, v) whenever ve P,. We define the function
FB(Kynint X\H) x P,,—0yp as before. Observe that

-1 .. 0 0 o |
0 e | 0 0
Ty Ty s Ry
D = " -1 ... ==
64“,9) Z: 7, E:ﬁj }:ﬂU zlﬂu
i1
7y T Ty Ty 1
i n; mooXm X
JETH1

has rank rn—1 for all (r,v)e(S\H) x R" because the (n—)x(n—D submatrix
in the lower right-hand corner has rank n-1-1. Since, for any (¢, 4)e &2,
(Kgnint X\H) x P, c{X\H) x R", we can use the Transversality Theorem to
prove that the set of regular economies is dense in the n-parameter family
{(£,, A)} = &2, We simply follow the same procedure as in Lemmas 3, 4, and
5

Observe that 0e P, and that, for any v P,

3

164z, o)} £ max

i"h

k=1+1
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Consequently, for any ¢>0 and any compact subset M of S\Z, we can
choose & >0 so that ||v]| <& implies that

dul(&, A), (&, AY]=du[(0,0)] <.

Therefore %2 is dense in 2. 3

Unfortunately, the situation with intermediate goods is not quite so simple.
We could, of course, modify assumption A.] again to allow for some &(m)=0
and then define the map g and the concepts of regularity and index of an
equilibrium as previously. If we tried to mimic our proof of Theorem 3,
however, we would find it impossible to prove that the set of regular
economies is dense in a space of economies where the restriction £{m)=0 is
placed on some components of the excess demand function. The
Transversality Theorem requires that we be able (o pecturb ovr map g
in a sufficient number of directions. The restriction {{n)=0 precludes us from
doing this. This is no mere technicality; the set of regular economies is not
dense in a spacc of cconomies with intermediate goods. Tndeed, there are
open sets of critical economies in such a space. We shall present a simple
argument to illustrate this point, but let us first develop a few preliminary
congepts.

We consider economies with n primary and final goods and h intermediate
goods. For such an economy let Em=(¢,(m),..., L (n)) be the aggregate
excess demand function for the first » commodities where each & depends on
only the fitst n prices. An economy with intermediate goods is specilied as a
pair (£, 4) where & satisfies assumptions A.1, A2 and A3 and A is an
(n+h) x m activity analysis matrix satisfying A.4 and A.5. Thus the space of
economies €2 is the product space of the space of excess demand functions
for the first n commodities, 2, and the space of activity analysis matrices
involving all n+h commodities, & 3. We endow &3 with a topological
structure analogous to that of 1.

To see why regularity, as we have defined it, cannot be a gencric property
of &3, consider an economy (&, A)e#? that has an equilibrinm at which no
production takes place. It is easy to construct such an economy: Simply take
some pure exchange economy (L, —Ieé" that has some cquilibrium #
strictly positive. Then choose a matrix Aes#? such that the equilibrium
{#4,...,7,) satisfies the condition

A

[# 0]4<0  where [’é]ew”.

Now, since (#,0) is an equilibrium of (& A)e &', so is any vector of prices
(#,q) that satisfies [#" ¢']A4 <0. [That the elements of (,q) may not sum to
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one is, of course, inconsequential; we merely divide by 1+, ¢,>0]
Observe that [# 0']4 <0 implies that there is an infinite number of such
prices. In other words, when no production takes place at equilibrium we
have no way- of determining the prices of intermediate goods. Furthermore, if
the original economy (A —Ded&* is regular, there is no way to eliminate this
problem by perturbing our parameters (¢, A). It is futile, therefore, to hope
_that wo can prove a result analogous to Theorem 3 for &3,

We can get around _this difficulty by altering several of our assumptions
and definitions. It would hardly seem reascnable to expect that the prices of
intermediate - goods be umiquely determined at equilibria where no
production takes place, We therefore want to develop a method for
examining &2 that treats equilibria where no production takes place
differently from those where it does. '

To start with, let us examine the implications of our non-degeneracy

- assumption A.6 on A.

Lemma 6. Suppose (é, A)ed? satisfies assumption A6. At any equilibrium
(%, 4), where some activities other than the first n disposal activities are in use,
there are k=h+ 1 activities in use.

Proof. Assume not, Partition the matrix B(#, §) into {g;] where B, is nxk
and B, is h x k. To simplify matters, assume that B(%, §) does not include any-
of the first n disposal activitics, Now A.6 implics that the matrix [ §i] has
full column rank since n+k=<n+h. Consequently, B, has full column rank.
That (#, §) is an equilibrium, however, implies that

B, |. . |&n) .
|:B::| y3=[ 0 ]= By7s=0,
which is contradiction, [

It is this result that makes assumption A.6 in its strong form attractive. If
we had replaced A.6 with the assumption that the matrix of activities in use
has full column rank at every equilibrium, then we would now want to prove
that the conclusion of this lemma holds generically whether or not A.6 holds.
Such a proof is, of course, easy, but it would complicate our exposition. The
implication of Lemma 6 is that if production takes place then we have
sufficient information to uniquely determine the prices of the intermediate
goods. Since we always want to have at least h+1 activities in use at
equilibrium, we must alter A.7 if we want to hold for an open dense subset of
&3, That some activity makes zero profit at equilibrium (7, §) does not mean
production is possible; something mnst he done tn ensure that we have
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enough activities earning zero profits to come up with the required amounts
of intermediate goods or get rid of the excess amounts produced.

{A.7)  Let B(m, g) denote the submatrix of A whose columns are activities
carning zero profit at (z, gle R""* At an equilibrium (%, g), B(#, §)
satisfics the following conditions:

(2) If some column b of B(#,4) is one of the first n disposal
activities, then §, is strictly positive in the equation

&) b
[ 0 ]“.M%.m yb[bz]'

{b} . If B(#, 4) includes more than h columns, not counting any of the
first n disposal activities, then all §, are strictly positive in the
above equation.

We modify our map g as follows: Partition 4 into [4!] where 4, is nxm
and 4, is hxm, Let

S,={neR"|n'd,+¢q'A, =0 for some ge R* e¢'n=1}.

It is easy to see that S, is a compact, non-empty, convex subset of 5. Any ¢
such that 7’4, +4¢'4, <0 must be non-negative since A includes disposal
activities for the intermediate goods. We alter slightly our definition of
equilibrium to require that only the first » prices sum to one. Choosing
eR" such that >0 and T4, +4'4,<0 for some geR" we define the
function ¢*:R%\{0}>R" as before. With these changes the definition of g as
P54+ E*()) should seem quile natural

Theorem 4. Fixed points of the map g and equilibria of the economy
(¢, A)e 6 are equivalent,

Proof. #i=g(#) if and only if there is some e R" such that (£, §) solves the
quadratic programming problem

min }p—#— E*@) (p 2 £*()),
st pA, +dA,50, pe=1.
But {#, §) solves the problem if and only if

PEXR) + g0 SAEHR)+§0=0,
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for all
(¢, g€ V= {(p.9eR*"|p'4, +£1’Az 0}.

Omnce again, this is equivalent to the statement that, for some y 20,

. e
oHHD -
Az

We definc the concept of regularity in the obvious manner: A regular
economy is one satisfying A.6 and A7 for which O is a regular value of
g—1I. If an economy (¢, A)e & satisfies the non-degeneracy assumptions A.6
and A.7, we shall argue that the map g is differéntiable in some
neighborhood of every fixed point. Let us calculate an expression for
det[Dg,—I]. There are two cases worth distinguishing: The first is where no
production, except for the possible use of some of the first n disposal
activities, takes place. The second is where production does take place.

Suppose that, at some equilibrium (£, §), B(#,4) includes h or fewer
activities, not counting the first n dispesal activities. In this case A.6, A7,

and Lemma 6 imply that, in some neighborhood of %, g(n) is equivalent to
the vector p that solves the quadratic programming problem

min¥(p—z— &) (p—n—&(n)),
st pe=1.

(There is, of course, an additional constraint p;=0 for each #;=0) In this
case the computation of index (#)}=(— 1)’ sgn(det[Dg, —I]) is the same as for
the equilibrium # of the pure exchange economy (&, —1I) that ignores the h
intermediate goods. Even if # is a regular point of g I, however, there is no
reason to expect that the prices of the intermediate goods are umqucly
determined.

Let us turn our attention to the second possible case. Suppose that, at
some equilibrium 7, B(#, §) includes more than h activities. In this case A7’
implies that, in some neighborhood of #, g(n) is equivalent to the vector p
that solves the quadratic programming problem

min(p—n—&n) (p—n— &),
st. p[Byy Bi]+4q[Bs; By]=0, pe=1.

Here we have partitioned the (n+h)xk matrix B(#,4) into B,, which is
nx(k—h), B,, which is nxh, B,, which is hx (k—h), and B,, which is hxh.
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Now A.G implies that B,, is non-singular, We¢ can thercfore transform the
expression

Bll Bl‘.’]

[’ Q"]!:
By By,

. By B, 1 0
[p q][ " ”}[ S _1J=0,
By, Bj;.|| —B3,'B,, B3,

By1~By3B37 B, BBt
7 rs ..:()l
[p q][ 0 I

This implies that gq= —(B,,B;)p. Therefore, to find g(x) in some
neighborhood of #, we can solve for p in the problem

min(p—n— &n))(p—n—&(n)),

st. p(Byy—By2B33'By)=0, pe=1.

into

Assumption A.6 implies that B, 1—B1,B33'B;; has full column rank. Hence
we can compute the expression

0 4 0
index(#)=(—1)"sgn | det| e D¢, Byy—B,B}'B,,
0 (B11—812B2_11321)’ 0

If we rescale so that

n [
Z ni+ Z qi= 1:
i=1 i=1
then it is easy to transform this expression into .

0 & ¢ 0 0

| e D& 0 By, By,

(—1)"**sgn| det{e 0 0 B, Bas
0 By, B,, 0 0

0 By; B;;, 0 0
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This, of course, it the expression for index (&, 4) that we compute when we
ignore the intermediate character of the last h goods. Consequently, when
production does take place we can expect the prices § of the h intermediate
goods to be uniquely determined if # is a regular point of g—1.

One consequence of these arguments is:

Lemma 7. Let (¢, A)e&? satisfy assumptions A6 and A.7. The map g is
differentiable in some open neighborhood of every fixed point #.

It is easy to demonstrate that regularity, as we now define it, is a generic
property of &3, The alteration in the map g has reduced the problem from
one in n+h dimensions to one in n dimensions. The local properties of any
equilibrium (%, §) of an economy (£, A)e &* that satisfies A.6 and A.7" are the
same as those of the equilibrium # of some economy with only »
commodities and the same ecxcess demand function ¢ The genericity of
regular economies in &* follows directly from Theorem 4. :

Theorem 5, The set of regular economies @#° Is open und dense in
& =93 x o3

Although the arguments presented in this section may have been laborious,
the results arc simple enough. The concepts of regularity and index of an
equilibrium can be applied directly to economies with primary goods. The
property of regularity is still generic in this case. The case with intermediate
goods is different only in that we must make special provisions for equilibria
where no production takes place. That intermediate goods can and should be
ignored at such equilibria is hardly a surprising result.

7. Alternative production technologies

Let us consider a constant-returns production technology characterized by
a set of feasible net-output combinations that is a closed convex cone Y < R".
The assumption on Y that is analogous to A4 is that the negative orthant
—R" is a subset of Y. The assumption on Y that is analogous to A5 is that
YR ={0}. If a production conc Y satisfies these assumptions, then the
intersection of its dual cone,

Y*={neR*|wx<0 forall xeY},

and the set {neR"ln‘e:l} is a non-empty, closed, convex subset of the unit
simplex. We denote this set as Sy. An economy could be specified by an
excess demand function satisfying assumptions A.1-A3 and a production
cone Y satisfying the above assumptions. An equilibrium for such an
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economy (f, Y) would be a price vector # such that #¢ Sy and é#)e ¥. This,
of course, is simply a generalization of our previous definition where

Y={xeR"|x=Ay, y=0.

The proof that (£, Y) has an equilibrium is identical to that of Theorem 1.

To employ our differentiable approach we must place further restrictions
on the production technology. We do this by employing the concept of a
profit function. To gain some understanding of this concept, let us suppose
that any vector x that satisfics the constraints

f(X)=0 and x;20, i=1,...,]

20, i=l+1,...,n,

is a feasible net-output combination. Here f:R"—R is a constant-returns
production function that employs the first ! commodities as inputs and
produces the final n—! commodities as outputs. We assume that f is
homogeneous of degree one and concave. For example

S, x2,x3) =ﬁ(—x1)a(—x1)1 TRy

is the familiar Cobb-Douglas production function when 1 Za=0 and §>0. To
derive the profit function a:R3\{0}—>R, we find a vector x(n) that solves
the problem

max 7'x,
st f(0)=0, |]x|[—1, x=0, i—=1,..,1

20, i=l+1,...,n

We then set a(n)=n"x(n). Thus the profit function tells us the maximum
profit that can be earned at prices = when we are constrained by ||x||=1.
Given our assumption of constant returns to scale, the profit that can be
earned at 7w is unbounded if a(z)>0. It is well known that a(m} is
homogeneous of degree one, convex, and continuous even if the vector x(r) is
not unique. If a is C!, moreover, Hotelling’s lemma provides us with a
relationship between the profit function and the profit maximizing net-output
vector x(n). This relationship is Da,(n)=x{n) [see, for example, Diewert
{1970)].
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Suppoée that Y is such that its dual cone can be defined by m C? profit
functions afr), j=1,...,m,

Y*={neR"a(m)<0, j=1,...,m}

Clearly, this definition is a generalization of the activity analysis case where
afm) is the linear function }'.,a,m. If we impose assumptions on the
functions a; analogous to assumptions A.4-A.7, we can define the concepts of
regularity and fixed point index as before.

Define B(#) as the nx k matrix whose columns are the gradients of the &
profit functions that satisfy a(#)=0. Hotelling’s lemma and the assumption
of constant returns allows us to interpret B(f) as a matrix of activities.
Further define H(#) as the nx n weighted sum of the Hessian matrices of the
samme k functions; the weights arc the appropriatc activity levels. The
calculations of index (#) becomes

0 € 0
index (7)=(—1)"sgn | det | e D& —H(#) B(A) |

0 B@ 0

The activity analysis technology is, of course, the special case where H(#®)=0.

Utilizing the principle of duality, we can specify the production technology
by a vector of profit functions a(m)=(a,(n),...,a.(x)) without having to
mention the production cone Y. An economy would thus be specified as a
pair (¢,a). A more detailed analysis of this type of economy, including the
calculation of the index, is given by Kehoe (1981).

An advantage to this more general approach is that it can easily be
extended to economies with production technologies that exhibit decreasing
returns to scale. In such an environment we have to specify production
functions for individual firms and make provisions to distribute the profits of
these firms to consumers. The situation can then be treated as a special case
of constant returns production where we define an additional primary good
to account for the profits of each firm; see McKenzie (1959) for details of the
construction. If the profit function of each firm is C2, then we can directly
apply the results that we have derived here to such economies.

Another assumption about the production technology that can be
weakened is A.4. Here we follow McKenzie (1959) in replacing free disposal
with the assumption that the interior of the production cone ¥ is non-empty.
To keep matters simple, let us assume that ¢ is C* over the entire dual cone
of Y except the origin, Y*\{0}. It is, of course, easy to weaken- this condition
to one analogous to A.L. Letting ¥€int ¥; we define
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Sy=Y*n {neR"ln‘f: —1}
Clearly, this is a generalization of the previous case where the free disposal

assumption allows us to set ¥=(—1,..., —1).

gy Ty

A\ W
«-\\\ )

T ; N
/7/ '

" Fig. 7

The assumption that ¥ n R% ={0} implies that Sy is non-empty, compact,
and convex, We again define X as u smooth n manifold that is a compact,
convex subset of R”, contains §y in its interior, and does not contain the
origin. We define the function g:X—X by the rule g(m)=p(n+&n). As
before, it can easily he demonstrated that fixed points of g are equivalent to
equilibrium of (£,Y). One problem that we face when we give the space of
economies a topological structure is that we must somehow fix the domain
of £ If we do this, and if we further specify the production technology using
either the activity analysis specification or the profit function specification,
we can prove the openness and density of the appropriately defined
regularity conditions.
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